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Behavior Domains in Theory and in Practice

The concept of a behavior domain is a reasonable and essential foundation for psychometric
work based on true score theory, the linear model of common factor analysis, and the
nonlinear models of item response theory. Investigators applying these models to test data
generally treat the true scores or factors or traits as abstractive psychological attributes:
common properties of the items, possibly with some inconsistency between their practice and
their theoretical statements. A countably infinite item domain defines an attribute uniquely,
and a function of the domain item scores gives an identified measure of it, to be estimated
from a finite set of item scores, with a defined error of measurement. In test development the
investigator must consider and justify the assumption that an item domain exists for the
specific measurement application and is large enough to be treated as infinite for that
application.

In the following, three fundamental matters are considered. First, it will be
suggested that the concept of a behavior domain—of a universal set of “items”
of a given “kind” to be explicated—is the most reasonable foundation for such
standard psychometric methods as the following: (a) generalizability theory,
(b) errors of psychological measurement, (c) theory for altering the length of a
test, (d) construct validity, (e) alternate test forms, (f) computer adaptive test-
ing, (g) differential item functioning, (h) facet theory, and (i) many more
specialized problems. Second, we consider the question: How should psycho-
logical attributes such as abilities, personality traits, states such as moods,
attitudes, or values be conceptualized, and what does our conceptualization of
the attribute imply for the denotation of behavior domains and the determina-
tion of an attribute by observations? Third, we are led to examine the practical
or substantive implications of the behavior domain concept for the construc-
tion of tests, and coming full circle the limitations on behavior domain theory
imposed by the practical limitations of test construction.

An adequate account of such large questions cannot be given within the
compass of a single article. A number of compromises are adopted including
some specialization for concreteness and the deliberate adoption of a not-too-
deeply philosophical level of analysis, that is, not too far removed from the
practical. Known technical (mathematical) results are summarized as informal-
ly as possible, because mathematical results are not central to the questions. It
is not expected that the account will appear definitive to all readers or to any
reader. It is enough that a neglected topic is opened for further discussion.

As a preliminary it is necessary to establish some terminology and some
mild specializations to give focus to the discussion. The terms behavior domain
and near synonyms, the universe of content and the universe of admissible measure-
ments seem to have been most extensively used by Guttman (1953a, 1954, 1955,
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1957, 1959, 1965, 1971) in the contexts of factor analysis and of facet theory and
by Cronbach, Gleser, Nanda, and Rajaratnam (1972) in the context of generaliz-
ability theory, a variant of Guttman’s (1965) facet theory. Guttman used the
concept to obtain limiting properties of the common factor model as the num-
ber of tests analyzed approaches infinity, where the tests are in some sense
drawn from a previously identified infinite set of tests. Cronbach and his
colleagues have used the concept of an infinite behavior domain in a linear
(ANOVA) model for a finite number of items, raters, and so forth to estimate
generalizability to further items, raters, occasions, and so forth, drawn in some
sense from a universe of such entities. See also Lord and Novick (1968) for a
number of applications of a more or less explicit notion of the drawing of items
from a domain that might yield a test of infinite length.

These brief remarks must serve as a summary of the literature on behavior
domains. I propose to set out a conceptualization of an item domain as the basis
of the present treatment that is consistent enough with that literature, although
in some respects more specific and more limited. A behavior domain based on
tests and their scores—item-sums—is already at a second level of abstraction or
complexity depending on the homogeneity or heterogeneity of the item sets
forming them. These complexities are avoided here by using items as the
elements of the domains rather than tests.

Recall that the typical item in an objective test measuring a psychological
attribute—trait or state—consists of a stem and a set of options, the choice of
which by a respondent is objectively scorable. In self-report personality or
attitude or value items, the stem is generally in a language shared by the test
constructor and the respondent. (The philosophically inclined reader will recall
Wittgenstein on the impossibility of a private language.) Cognitive items and
projective test items admit a wider variety of stimulus materials, not strictly
requiring a shared language yet still resting in a sense on shared symbolic
systems. The chosen response option may be coded to give an item score, for
example, 0/1 for a binary item, 1 through k for Likert scoring of k ordered
categories, or similarly an integer score for answers to questions on a common
stem, for example, a passage of prose or verse. Commonly the scores from the
set of items are combined to yield a sum- mean- or formula-score for a “homo-
geneous” test or possibly to yield a profile of subtest scores.

We also recall that the mathematical concept of a domain is the set of
elements on which a mathematical or logical variable is defined. The obvious
but perhaps neglected implication of these truisms is that the item stems
identify the items as the elements of a set that constitutes a psychological test.
Of course, each item-score can be modeled as a random variable defined on a
domain consisting of a sample space of possible respondents, but this is not the
domain that concerns us in item-domain theory, and the item-scores of a set of
items do not themselves constitute the elements of a behavior domain or
universe of content or admissible measurements. More generally, in multi-

‘faceted designs such as those treated by Cronbach et al. (1972), it would again
be the distinct raters, occasions, or situations that define the universe of admis-
sible measurements, not the measurements: the quantities themselves, which
lack the required property of distinctness. Here we will limit discussion to
item(-stem) domains, both for concreteness and for brevity, and avoid alterna-
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tive terminologies. The conception of a test as a set of items in the strict sense of

set theory forces attention on the common property of the items that defines set

membership, or if the items in a given finite test are merely listed, forces
attention on the lack of a criterion for set membership.

A trivial formalization of the commonsense notion of shortening a test
follows by noting that a shortened test contains a proper subset of the items
(the identifying stems and the associated response options) in an initially
realized set of items. (The term realized is used here to mean “made real” instead
of saying “written” or “constructed.”) Often, but not always, test construction
begins with a “large” set of realized items designed to measure a psychological
attribute from which a smaller set is chosen either for convenient adminis-
tration or because some items are not considered satisfactory indicators of the
attribute.

Less trivially, a formalization of the commonsense notion of lengthening a
test follows by noting two possibilities. First, a lengthened test might be ob-
tained from a large set of realized items—the item pool or bank—from which the
short test was taken, so that lengthening the test consists merely in adding
more realized items from the pool. Given the item parameters, available theory
allows optimal choice of items to add. Second, a lengthened test might be
contemplated in theory where the short initial test consists of all items so far
realized, and, for example, we ask how many more items are needed to attain a
certain precision of measurement (reliability). This second case points to some
fundamental conceptual problems and thereby to the main argument of this
article.

1. The psychometric properties of the as yet unrealized items are not yet
known: hence, for example, the strong assumptions of exchangeability of
items in the Spearman-Brown formula for reliability of the lengthened test
and in Cronbach’s ANOVA treatment of generalizability.

2. More important, it may not be known what prescribes membership in the
extended “universal” set of items. That is, we may lack a denotation for
membership of the universal set.

3. Given a sufficiently clear denotation, we may not be able to write more than
a limited number of further items that belong to the set, or it may not be
known whether this is indeed possible. It may be that we do not see how to
write just one more item. Consider a knowledge test on the signature keys
of the Beethoven symphonies.

The ultimate extension of a test is, of course, to a universal set containing a
countable infinity of realizable items—yielding a test of infinite length—of
which only a finite number may be realized in practice. Much elegant
psychometric theory rests on the concept of a test of infinite length, but for such
theory to be applicable, the application must appear at least plausible to the
imagination of researchers. This is a substantive, not a mathematical problem,
and it cannot always be simply supposed possible. Again, a simple example is
a test on the keys of the nine Beethoven symphonies.

Certainly the attainability of a countable infinity of items cannot be directly
verified in an application. We might suppose, much as in the asymptotics of
sampling theory for an infinite population of subjects, that behavior at infinity
can be well approximated by a finite “sample” of items. We might also sup-
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pose—a distinct matter—as in the application of sampling theory for infinite
populations to sampling from large but finite populations that infinite item-do-
main theory will sufficiently approximate the behavior of a finite but large item
domain. (Perhaps for a knowledge test the 104 Haydn symphonies are a virtual
infinity.) Indeed, Guttman (1953a) conjectured that a domain of about 10-15
variables would closely approximate an infinity of them.

If we have a clear denotation for a psychological attribute giving a clear
prescription for the item-writer, item realization is still not analogous to the
random sampling of individuals from a defined population of interest. It can be
conjectured that commonly the best items are written first, so (a) later items
will not match early items in their desirable parameters, (b) later items will less
clearly belong to the domain, and (c) later items will begin to fall naturally into
subsets corresponding to subdomains. Implicit in these remarks is a conception
of the homogeneous test, which for the moment we take simply from the Greek
root of the word to be one where the items are of the same kind: the kind being
given by the denotation of the set of item stems, or possibly by intuitive
abstraction from the character of the items.

It might seem that here discussion should continue on the nature of psycho-
logical attributes—concepts, constructs—and the conditions needed in applica-
tions for the denotation of an item domain—a universal set of as yet unrealized
items that is possibly countably infinite—before turning to an account of the
formal psychometric theory that is enabled by item domains. The advantage of
putting the cart before the horse and turning to a sketch of the main chapters of
the formal theory of psychological measurement that can be based on the
infinite item domain conception is that the psychometric concepts in turn help
to formalize the discussion of psychological attributes in theory and in practice.
In the following section I consider the main applications of item domains to test
theory. Following this is a section about the determinacy of factors in relation
to the conceptualization of psychological attributes. And after this we consider
what can be said about the relation between the theory and the application of
item-domain concepts.

The Domain of Item Domains

It may be claimed that the range of work that requires infinite item domains for

its foundation corresponds to a large part of psychometric theory. To illustrate,

I return to the list in the opening paragraph.

1. Generalizability theory has its best known development at the hands of
Cronbach et al. (1972). Here we limit consideration to a single-facet design
in which j=1,...,m items yield scores Xj,- from i=1,...,N respondents in a
G-study (an initial calibration or generalizability study). It is assumed that
the items are exchangeable as to their discrimination parameters, and we
use an ANOVA model

X;=u+D,+T,+E; , (1)

‘where p is a grand mean, D, represents item difficulty, T, respondent attribute,
and E; is a residual, consisting of a random interaction of respondent i with
item j (conceptually confounded with an undefined error, possibly associated
with unrealized replications of the observation). Standard ANOVA yields es-
timates of o2, the variance of the attribute, and of o, the variance of the

215



R.P. McDonald

interaction term, in a mixed model (i.e., D; fixed) or in a random model (i.e., D;
random as well as T). In the latter case 02 the variance of random difficulty, is
also estimated. These estimates yield generalizability coefficients: either
Cronbach’s alpha if difficulties are not random, or an alternative that includes
random difficulty in the error variance. The generalizability in question is from
the finite set of realized items to an infinite set of admissible measurements, that
is, of as yet unrealized items of which the given items are considered a random
and representative sample. The generalizability coefficients as estimated are
used to conjecture the properties of responses to finite sets of items drawn from
the item domain in a D-study (decision study) under the strong assumptions of
the model. It does not seem possible on the face of it to weaken the foundations
of this theory by forgoing the infinite item domain while keeping its conse-
quences, except merely by allowing the domain to be finite and “sufficiently”
large.

In an alternative treatment of generalizability given by McDonald (1978a)
we replace Equation 1 by

X;= p+ 8+ LF+E; (2a)
or
X,;= D;+ MF,+E; , (2b)

where D, (here fixed) again represents item difficulty, A, is a scaling constant
representing the discriminating power of item j, F; is a measure of the
respondent’s attribute, and E; is again a random interaction between the
respondent and item j with variance y?. With the usual assumptions, this is just
the classical Spearman unidimensional factor model. Here F; is the
respondent’s common factor score, and the uncorrelated residuals E;, Ey;, k # j
are components unique to the item scores. A simple formula score for the set of

m items is the mean S, of the item scores, for which we have a true-score model
S;=D,+ T,+E.,=D.+ A F,+E.; , 3)

where D, and A, are means of the parameters, S, is the mean of the item scores,
and T= A,F, a rescaled version of the attribute with variance (A.)?, It then
follows (McDonald, 1978, 1985, 1999) that coefficient omega is a classical
reliability coefficient and a coefficient of generalizability, where

A+ A

writing also (y?), for the mean of the m unique variances. Omega is the squared
correlation between the mean score S; on the m realized items and the domain
mean score T, which is the limit of S, as more items are drawn from a
prespecified infinite item domain that fits the unidimensional factor model,
that is, is psychometrically homogeneous. It may be shown that o >o, with
equality if and only if the realized items have equal loadings. Coefficient
omega has three advantages over coefficient alpha.

1. It does not require that the m realized items are representative of as yet

unrealized items in the domain.

@)
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2. In the course of its computation we test and possibly falsify the assumption
yielding alpha that the items have equal loadings.

3. We test and hope to verify that at least the items so far realized form a
psychometrically homogeneous set in the sense of fitting a unidimensional
model.

Estimating an attribute of an examinee and assigning an error of measure-
ment to the estimate requires inter alia a clear definition of what is estimated.

In classical true-score theory we write

(where again it is convenient to take the item mean score as the observed test
score). This yields for a test of known reliability p, , S, as the unbiased estimator
of T, , and (1-p,)Var(S} for the error variance, which may be used to put
confidence bounds on the estimator. If p, is taken to be coefficient alpha, the
implicit model is Equation 1. It is also possible (McDonald, 1970) to take p,to be
coefficient omega, in which case the implicit model is Equation 2. In principle
this is preferable as it requires only homogeneity. However, other devices yield
a reliability coefficient, the commonest being the test-retest method, which
correlates replicate measures on the same m items across two occasions. Retest
correlations often give useful information about the temporal stability of a test
score over a chosen interval from which we might sometimes be willing to
draw indirect inferences about the temporal stability of the psychological at-
tribute the items have been chosen to measure. Generally, however, retest
reliability bears no relation to the precision of measurement of the attribute that
is the objective of the measurement process.

We may, therefore, reasonably take the strong, falsifiable assumptions of
Equation 1 or the weaker, falsifiable assumptions of Equation 2 to define true
scores. Then the reliability coefficient is the generalizability coefficient, the true
score is the domain score, and the error is due to interactions of random
respondents with unique properties of the m realized items, which increasingly
cancel on average as the number of items grows. It might be too much to claim
that the infinite domain score is the only possible definition of true score. It
should be clear that any conceptualization of true score justifying putting
confidence bounds on that of a given examinee must make it an identified
person parameter to be estimated—with error. Guttman (1953b, 1969) has
given cogent critiques of undefined true scores.

An obvious limitation of this discussion is that the linear models in Equa-
tions 1 and 2 may be used to a reasonable approximation for items whose
options allow scoring over a large enough range of integers, as in Likert scales
for attitude or self-report personality items, but at best provide a rough approx-
imation to binary item responses. For a modern account of the estimation of an
attribute with an appropriate standard error of measurement, we of course use
item response theory. Given m item-stems with a binary response (pass/fail,
- agree/disagree) we fit, say, a normal ogive or logistic model

P(X;i=116;) =L +b;8) , ©)

where L(,) is a suitable nonlinear link-function, squeezing the response prob-
ability between the required bounds of zero and unity, whereas the latent trait
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6, is defined unboundedly from negative to positive infinity. The principle of
local independence, which states that conditional on 6, the item responses are
mutually independent, is a stronger analogue of the assumption of the linear
model in Equation 2, that conditional on the common factor the item scores are
uncorrelated (McDonald, 1981). In applications, instead of estimating a given
examinee’s trait value 6, we might instead estimate her or his true score t,. The
test characteristic curve

1
t= - X PX;=116) )

gives the true score as a function of the trait. (This is a relative true score
bounded by zero and unity.)

There appears to be little to choose in applications between the unbounded
metric for 6 and the bounded metric for t, because, it may be claimed, the
psychological attribute is at best defined on an ordinal scale. It is well known—
see, for example, Lord (1980)—that the error variance of the observed mean
score S about the true score t of a specific examinee is given by

G0 =1 2. PIOI[L - P(6}]. ®)

For brevity and simplicity I avoid a more developed exposition of information
functions and efficient estimators in favor of an account closer to classical test
theory (see Lord, 1980, or McDonald, 1999, chap. 13, for a further account).

As in classical test theory, a fundamental question for item response theory
is what defines in their respective metrics the trait 6 and the true score ¢ for a
chosen examinee, that we seek to estimate from his or her pattern of responses.
The reader may consider it too much to claim that the infinite item domain
score is the only possible realization of true score in an item response model or
that 6 given by the item domair is the only possible realization of the latent
trait: which, we note, is then seen to be not in any sense latent, hidden, or
underlying, but simply as the limit of a sequence of observations that is pos-
sible in principle, but cannot be completed in practice. For this reason it should
always be preferable to speak of common factors, not latent traits, in IRT.) Yet
again it should be clear that any alternative treatment of the estimation of true
scores or (latent) traits yielding a standard error of measurement must make
these quantities identified person parameters to be estimated. On the face of it,
without a clearly denoted item domain, identifiability is lacking.

The effect of shortening or lengthening a test on reliability or error of
measurement can easily be estimated under the model of Equation 1. By
well-known theory this requires a simple application of the Spearman-Brown
formula. If we have actually tested this model, verifying that the item covarian-
ces are equal or—an equivalent—the item loadings are equal, it is a matter of
indifference which items we remove to shorten the test. In adding further items
to lengthen it, the use of the Spearman-Brown formula is conjectural as we
cannot know that as yet unrealized items will be parallel to the realized set.

Under the model of Equation 2 it is easy to show that we can choose as a
subset giving maximum reliability those with the largest information
measured by A}/y?. This model does not help us to go beyond the Spearman-
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Brown formula for a conjecture as to the gain in reliability from adding further
items, but it does weaken the needed assumption to the requirement that the
average loading and average residual variance of the added items be the same
as corresponding averages of the given set (McDonald, 1999). There is now
considerable theory for shortening tests fitting an item response model, but the
problem of adding items does not allow, on the face of it, any new approach.

Fundamental to these models for the effects of shortening or lengthening a
test is the notion that the given set of m items, the chosen proper subset, and the
extended set all yield estimates of the same quantity: true score or trait. It is
then reasonable to regard the true score or trait to be estimated as the score
given by the infinite item domain. The alternative to the assumption of an
infinite item domain here seems to be a vicious particularism in which we say
that adding or subtracting one item changes what is measured.

Construct validity, as (apparently) distinct from content validity, remains
perhaps an ill-defined yet influential notion. It roughly amounts to the claim
that a test of m items is valid to the extent that a sum or formula score derived
from the item responses measures a theoretical concept or construct. (The
notion of a construct belongs to a long-dead fashion in philosophy, but the
word has unaccountably survived.) Factor analysis and (occasionally) path
analysis seem to be the two main recognized devices for establishing construct
validity (Messick, 1989). Here I risk making the claim, for brevity, that in many
studies purporting to establish construct validity, the construct is indeed taken
to be the common factor of the items. It follows that coefficient omega in
Equation 4, the squared correlation between the test score and the common
factor, is a measure of construct validity. In this view, at this point we conclude
that reliability is generalizability is validity, which makes a considerable
simplification in thought (McDonald, 1985).

I now state the central claim of this article: In applications to homogeneous
tests the Spearman factor, by Equation 2, corresponds to the attribute the m
realized item stems indicate in common, and the responses to them measure in
common. The countably infinite set of item stems in the domain substantively
gives a unique identity to that attribute, and a function of the scores on that set
determines a measure of the attribute uniquely, as the quantity to be estimated
from any finite subset.

The list thus begun could continue, to show how the infinite item domain
provides a foundation for alternative test forms—disjoint sets of items—
measuring “the same attribute”; computer adaptive tests measuring “the same
attribute” with individualized subsets of items; detecting items that function
differentially in measuring “the same attribute” in distinct populations of
interest; a quantitative account of facet theory: the reader may continue the list.
It could also be shown at length (but it is hoped that this is self-evident) that
those well-known devices for the analysis of item responses that do not consti-
tute falsifiable statistical models—principal components, smallest space analy-

. sis, correspondence analysis—cannot provide an alternative technology for
problems (a) through (h) or for others of the same kind.

Factor Determinacy and the Conceptualization of Psychological Attributes
It has long been known that for a fixed and finite set of variables, the mathe-
matical equations of the Spearman factor model—and multiple factor counter-
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parts—have an infinity of alternative solutions in terms of common-factor and
unique-factor scores given the item parameters. This was first noted in the
unidimensional case by Wilson (1928), and Spearman (1929) responded in
terms of an infinite domain of tests. Kestelman (1952) gave corresponding
results for multiple factors—the multidimensional case—and Guttman (1955)
showed how to choose maximally distinct alternative mathematical solutions
to the model equations. Further discussions of the mathematics of the factor
indeterminacy question are given by Maraun (1996a, 1996b, 1996¢), McDonald
(19964, 1996b), Bartholomew (1996a, 1996b), Mulaik (1996a, 1996b), Rozeboom
(1996a, 1996b), Schonemann (1996a, 1996b), and Steiger (1996a, 1996b).

The mathematical results have long been understood. Their possible im-
plications in the use of the common-factor equations to model the behavior of
examinees in response to tests or items do not seem to have been unequivocally
stated and remain problematic. Some discussion of possible implications for
practice can be found in the references cited above, but these still perhaps
remain obscured by technicalities.

The algebraic results, which are indeed quite technical, can be sketched as
follows. Because in the common factor model the number of common factors
plus unique factors—residuals—must exceed the number m of variables X,
that is, there are more unknowns than knowns in the system of linear equa-
tions, then from the values of the observations X; we can construct infinitely
many alternative sets of common factor scores F; and residuals E;, which jointly
satisfy the equations by the use of arbitrarily generated numbers (Kestelman,
1952). The correlation between maximally dissimilar lists of common factor
scores is 2p2— 1, where p?, is the squared multiple correlation between F, and
the m item scores (Guttman, 1955). A necessary condition for the Spearman
factor and the residuals to be determined by a finite number of items is that one
of them shall have zero residual variance. This condition can be approximated
in applications and is a special type of improper solution: an exact Heywood
case. The best discussion of this remains that of Thomson (1951). On rewriting
an item response model for binary variables as a common-factor model for
continuous variables that yield the binary variables by dichotomization, we
easily see that item response models give corresponding multiple solutions for
0, in Equation 6. Further remarks below implicitly apply to item-response
models also. Some readers may not be aware that the factor indeterminacy
“problem” is equally a problem in the Rasch model. Conventional accounts of
this model have not commonly defined the quantities being estimated or
shown how these are distinguished from the estimators. For our purpose it will
suffice to consider the unidimensional case: the Spearman model given in
Equation 2.

The results cited belong to the basic mathematical structure of the common
factor model for a fixed set of just m variables. It is not obvious what empirical
counterparts they might have when the factor model is used to represent
responses of human examinees to item stems written to realize a psychological
attribute such as extraversion, social conservatism, or attitude to gun control.
Like all mathematical models the factor model has a purely mathematical
structure that constitutes the syntactics—the “grammatical” structure—of the
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model, and rules of correspondence are needed that constitute its semantics
whereby we may say things like “the common factor of these items is anxiety.”

The problem is to give a rationale for alternative solutions to the equations
of the model when it is applied to an empirical dataset. We may safely dismiss
any accounts in the confused and confusing literature on this topic that broadly
imply that the existence of alternative solutions to the factor equations makes a
problem for applications without showing how the alternative solutions can be
obtained from empirical measurements on examinees. The reader is en-
couraged to apply this test to the collection of references cited on this topic.

In the present state of knowledge there would appear to be two recognized
ways to translate the arbitrariness of the mathematical solutions of the factor
equations into alternative meanings of empirical results. The first of these is
here labeled the omitted cause conception; the second is the common properties
conception.

In the first, the common factor is conceptualized as an omitted measure-
ment on the respondents: a single observable empirical variable that we have
not yet been able to identify and measure, which will when discovered be
recognizable as in some sense a common cause of the item responses. An
investigator who seriously adopts this conception of a common factor (and its
special case, the true score) should not be able to justify using the classical and
modern test-theory methods (a) through (h) above, but should instead take the
range of solutions of the equations as somehow defining a field of search for a
discoverable measure on the examinees whose denotation is independent of
the items. The notion is that given a set of unidimensional items, we may
eventually discover, and perhaps should immediately try to discover, a
measurable variable that has the same correlations with the m item scores as
does the common factor and stands in relation to the item responses as an
independently identified cause of the responses as effects. In this view we
might discover two or more variables with identical profiles of correlations to
the item scores and low (possibly negative, if 2p? — 1 is negative) correlations
with each other.

There seems to be no search strategy that could be brought to bear on this
problem, and I am aware of no example in the literature of a direct claim by an
investigator to have discovered one empirical causal variable—let alone two—
that constitutes the identity of a common factor or of a case where the inves-
tigator has seriously searched for such a variable. This does not mean,
however, that structural analyses of psychological data do not exist that are
open to such an interpretation. Nothing in the factor model requires a common
factor to be initially unobservable and discoverable in the future. Indeed, any
path analysis “without latent variables,” that is, “without common factors,” in
which one externally defined variable is treated as the cause of more than two
dependent variables and accordingly omits nondirected paths between the
latter, is precisely a case of this kind. (This strains terminology. A model

- without common factors—latent variables?—may then be a model with ob-
servable common factors—latent variables?) We note, however, that any such
case can always be interpreted as one where the external variable causes the
common factor of the dependent variables, that is, acts to change the level of
the psychological attribute common to them. To give a possibly crude illus-
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tration, consider the observation that a tranquilizer reduces muscle tension,
and suppose that it also reduces state-anxiety measured by a number of self-
report items. The reader is invited to decide between (a) saying that muscle
tension is a cause or perhaps a physiological correlate of the psychological
attribute of anxiety, where anxiety is the common factor of the items, and (b)
muscle tension is constitutive of anxiety and can now replace the primitive
anxiety concept. And on what grounds can the choice be made?

We are led inevitably to some of the deeper philosophical questions about
the nature of psychological concepts including questions about physicalism or
psychophysical dualism. Whether skillfully or clumsily, I propose to sidestep
these issues and make the broad and deniable claim that researchers into
personality, cognitive abilities, attitudes, and so forth who say and presumably
believe that they are investigating as yet unknown neurophysiological en-
tities—"“existential concepts” in Feigl’s classic terminology—underlying and
actually constitutive of common factors such as extraversion, anxiety, agree-
ableness, economic conservatism, or attitude toward gun control assert a gen-
eral commitment to physicalism that does not detectably affect their
psychological concepts.

A simple criterion we may apply to the behavior of the test constructor to
determine the nature of the concept being developed is to ask on what grounds
the investigator would add a further item stem to lengthen the test, and
continue to measure the same attribute. For example, if we accept that anxiety
can be replaced by muscle tension, we will add items like “I need a massage.”
Suppose also that we are supplied with the observation that quadriplegics can
report severe anxiety. We revise our hypothesis to the claim that a tranquilizer
directly acts to inhibit a specific cortical activity, which in turn both reduces
anxiety and relaxes muscles in the intact person. The respondent cannot
generally report the level of the specific cortical process, so this hypothesis
gives no rationale for writing an (m+1)st item.

It is my deniable but not unreasonable claim, made from wide observations
of the literature, that investigators do not operate a common-cause notion in
applications of common factor/item response models. Rather, they write or
add them to a given set, to be “of the same kind,” in the sense that the items
share a common property with each other or the given items while also posses-
sing an idiosyncratic characteristic. In Feigl’s classical terminology, the items
are instances of an abstractive concept. Thus, given the items “I often feel tense
and jittery” and “I'm an even-tempered person” (measuring emotional
stability), we recognize that a further item such as “I feel I am capable of coping
with most of my problems” is of the same kind, whereas an item such as “I
really like most people I meet” is not. This recognition is on semantic-psycho-
logical grounds, not on the basis of a causal theory. My claim, which is com-
parable in its originality to the discovery that we speak in prose, can be tested
against the reader’s own practice or experience. What is surprising is the
number of investigators whose quite rational practice is to put items together
in terms of their common properties, but whose theoretical remarks appear to
deny that this is what they are doing.

Consequently, if as claimed above a Spearman factor of empirical item
responses is a common property of the item domain from which they are
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drawn, and not a common cause, then alternative common factors must be
alternative common properties of alternative item domains: sets whose inter-
section contains the given finite set of items as a subset. To examine this
possibility we generalize a classical conception of “singly conforming tests”
due to Thomson (1934) into the concept of singly conforming extensions. In
exploratory factor analysis an investigator sometimes embeds what are
referred to as marker variables for a common factor—variables whose common
property is believed to be understood—in an added set of variables the concep-
tual properties of which are not believed understood a priori. The exploratory
procedure consists in seeking to establish that the added variables, which we
will refer to as the extension set, load on the same factor as the marker set in an
analysis of the union of the two sets and that the loadings of the markers are at
least approximately invariant. Nothing in this procedure requires that the
extension set should be drawn, with the markers, from a universal set with a
clear denotation. In such a study the factor would be “interpreted” as the
attribute already identified as the common property of the markers.

Thomson (1934) showed that given a unidimensional set of m (marker)
variables, it is mathematically possible to find two [extension] variables, either
of which jointly fit the unidimensional—Spearman—model with the marker
set, but when both are added the m+2 variables cannot fit a single-factor model
in which the original variables keep their original loadings. Thomson described
such inconsistent extensions as singly conforming tests. In adding two items or
tests separately or jointly to a given set of m unidimensional items there are
four distinct cases to consider (McDonald, 1977).

We rewrite Equation 2 with all variables standardized, as

Yy= A F+VA-23) Ey ,j=1,...m, ©)

for a marker set, identified by the added zero subscript. We also have two
extension variables Y; and Y,. We write the model for each of the extension
variables, when each is added separately, as

Y= p F+N(1- p}) E (10a)

and

Y,=p, F+N(1- p) E, . (10b)

(In the Spearman model, with all variables standardized, the loadings are
correlations of the observed variables with the factor, as well as being regres-
sion weights. Below we consider a situation where the extension variables are
item composites that estimate the factor. The notation helps cover this.) The
four cases are as follows.

Case 1. In this case it turns out that in the joint analysis the m+2 variables fit
the unidimensional model because the correlation between Y1 and Y2 happens
tobe

P12= P1P2 , (11)

(or in a sampling study this holds to an acceptable approximation). In this case
the extension variables are jointly conforming to the Spearman model.
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Case 2. This is the main case of singly conforming variables treated by
Thomson (1951). Here we find that

Y, = M FENQA- p}) E (12a)
and
Y,= L, FENQ1- p) E . (12b)

That is, Y, and Y, have identical unique components E, so their correlation,

P= PPt NA - pD(1 - p)) . (13)

To borrow a numerical example from Thomson (1951), if p, = .8 and p, = .4, then
p,p, =.32, but we might find that

pp= 32+ N(1— 81— 42 =87
or
pu= 32— V(1- 8)(1- 4)=-23 .

As Thomson (1951) showed, two such singly conforming variables taken by
themselves determine the common factor of the m marker variables precisely.
Like the exact Heywood case, such a perfect pair of determiners corresponds to
an infinitesimal set of values of the parameters of the model (formally, to a set
of points in the parameter space of measure zero), and as Thomson noted, like
an exact Heywood case, it stops the process of lengthening the test, as any
further variable conforming to the model will “prove the impossibility of its
own existence” (p. 232) by making the correlation matrix impossible (not
positive definite). Also, in an application it requires the singly conforming
items to share their specific properties and errors of replication, which might
seem problematic. Even giving the same item twice may not achieve this.

Case 3. Here we find we can write equations

Y1 = 7\,11: + 'Y1G + Dy (143)
and
Y, = >\.2F + 'YzG + D». (14b)

That is, Y; and Y, share a part of their separate unique components, plus
redefined unique parts D, and D,. In other words, when the extension variables
are jointly added to the markers, they define a second common factor and
redefine their unique components. For this to occur there is a condition on the
correlation p,,, namely that

pip2— V(1= pH(L = P <pi< pipo+ V(1= pD(L - pd) - (15)
Thus in Thomson’s example we must have
-23< P12 < .87 i

for the joint factor structure to be completed without obtaining an improper
solution.

Case 4. We find that the condition of Equation 15 is violated, and we cannot
explain p,, with an added common factor, leaving the loadings of the markers
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unaltered. In this case, for the m+2 variables to have a possible (positive
definite) correlation matrix, there are still bounds on p,,, but these are

02 pipa— V(A= p2p2) (1 - p2pd) <P < papyps+ V(1= pZ pd) . (16)

This is a specialization of a result in McDonald (1977). If the bounds in Equa-
tion 15 are not also satisfied, we have a Heywood case, with a negative residual
variance in the joint analysis of the m+2 items. Here p? is the squared multiple

correlation between the marker variables and the factor F, given by

.3 a- )
Pn= T3y pera- o1

Suppose, for example, that we have four marker variables each with loading .5.
Then, by Equation 17, p? = .75, so the bounds are —.576 < p,, < .942, wider than
for Case 3.

We see, then, that it is possible to add an (m+1)st item to m marker items for
a single factor, in possibly inconsistent ways, to extend the set. Only a joint
analysis would show which of four distinct cases occurs.

Now suppose that instead of finding singly conforming item scores Y, Y,,
we find two extension item sets (Y;,..., Yy}, and {Y,,...,Y,}, each of which fits
the Spearman model when analyzed alone, and they respectively have squared
multiple correlations p? and p? with their common factors. Suppose we com-
pute the regression estimators of the common factors of the two extension item
sets. These are just composite scores which we can then regard as simple
extension variables, replacing Y, and Y, in Equation 10, and they yield one of
the cases considered above.

Further, we can suppose each extension set can be taken in the limit to form
a test of infinite length. In such a limit we have p? = p?=1. It follows in Cases
1-3 that the correlation between the separate estimators—composites of the
extension sets—becomes unity, but in Case 4 the limit gives 2p2 -1<p;,<1,
recognizable as corresponding to Guttman'’s bound on the correlation between
alternative solutions. The joint analysis of the m items with the two tests of
infinite length then yields a negative unique variance.

The Case 4 limit appears to supply a possible empirical realization of
distinct factor scores with low correlations. Such singly conforming extensions
might be approximately realized in applications with large though finite num-
bers of extension items. An analysis of the union of the marker set and the two
extension sets would then yield a Heywood case. We can then equally say that
two extensions have been found that might be their common factor, or that no
such extension exists. And if in developing the extensions we reach a point
where Case 2 holds, no further items can be found to continue the sequences.
The argument outlined above is a nontechnical account of that given by Mc-
Donald (1977). Closely equivalent treatments are in Mulaik and McDonald

. (1978) and McDonald and Mulaik (1979). See also McDonald (1978b) for a
discussion of the practical consequences of using marker variables and exten-
sion sets. This may be summed up as a recommendation against such methods.

Mathematically, Case 3, and therefore possibly Case 4, can be realized by
scores from tests of infinite length that are singly conforming when their total

17)
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scores are joined to the item scores of the markers. In Case 3 the correlation
between scores on the tests of infinite length is unity. In Case 4 it is subject only
to the Guttman lower bound. However, there is still need for more detail on the
possibility of producing such sequences in empirical work. Seeing how this
might be done deliberately may help show if it could happen inadvertently.
First, we need to examine the extension process mathematically at the level of
item scores and then, by a “thought-experiment,” imagine the design followed
by corresponding item stems.

It does not seem mathematically possible to create infinite sequences in
which each item score in either sequence is singly conforming, that is, con-
tinues jointly unidimensional with the marker item scores to yield these tests of
infinite length, because to do this each added pair must define a fresh common
factor in the union of the sets, hence the two separate sequences do not define
a common factor measured by their composite test score.

Instead of attempting to find singly conforming pairs of item scores, we are
forced back to the possibility of creating singly conforming test scores with low
or minimum correlations. To create Case 3 empirically (and hence make Case 4
possible), we might try to find sets of items measuring a second factor with
opposite polarity (positive and negative loadings in the respective sequences,
as revealed in a joint analysis). If the joint analysis of the m marker item scores
and the two test scores gives a negative residual variance, we have managed to
create Case 4. Analysis of the union of the marker set and either extension set at
the item-score level, however, will reveal the second factor in the joint
structure. That is, the test scores will be singly conforming, but their com-
ponent item scores will not.

To create such a pair of singly conforming tests, we need actual item stems
that are factorially complex and pair up to measure one factor in the same
direction and a second factor in opposite directions. For example, we add to a
set of marker items for anxiety, say, “I feel anxious when I am alone,” or “I feel
anxious when I am in a crowd.” The hope is that a second dimension of
extraversion is being measured in opposed directions. Such a procedure, if
successful, would create an empirical Case 3 and thus make possible Case 4.
Analysis at the level of item stems would reveal the second factor in either
extension and allow it to be interpreted as extraversion. This does not tell us
how to design a Case 4—how to create a joint Heywood case deliberately—but
only how to make one possible. My rather unsatisfying conclusion is that I do
not see how to create Case 4 singly conforming tests deliberately (and so,
conversely, to avoid them) in the design of item contents, so I let this statement
stand as a challenge to the researchers. Valuable knowledge could be gained
from a demonstration of how to do this. On the face of it the problem of finding
singly conforming tests whose correlation approaches Guttman'’s lower bound
reduces to the problem of the Heywood case, and we do not yet have full
substantive understanding of Heywood cases.

Theory Versus Practice?

First let us review in summary form the points made above.

1. The formal concept of an item domain—a universal set containing a count-
able infinity of item stems and their response options—provides a most
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reasonable foundation for a large part of the theory of the construction and
scoring of objective tests measuring psychological attributes.

2. Asis well known, the mathematical equations of the single-factor model for
a fixed and finite set of items yield arbitrary values for the common and
unique scores given the values of the manifest variables unless we have an
exact Heywood case. Maximally dissimilar values of the general factor have
a correlation 2p2 — 1 where 2p? is its squared multiple correlation with the

item scores. Not well known are the implications of this multiplicity of
solutions for the construction and application of tests.

3. One possible empirical counterpart of alternative common factors would be
alternative possible common causes of the set of item responses. Specific
examples of such common causes in the literature seem sufficiently rare to
allow a denial that investigators commonly operate this conception with
any seriousness. Rather, it appears to represent a commitment to some
general philosophical principles, for example, physicalism, that have no
detailed implications for the actual practice of writing and lengthening a set
of test items and generally would be contradicted by their practice.

4. In the general practice of the psychometric analysis of item scores, the
common factors (and in particular the true scores) of items are literally a
common property of the items as responded to by the examinees: an
abstraction either determining a priori the writing of the item stems or a
post facto abstraction from the psychological-semantic characteristics of the
items as specific examples of the generic concept they are designed to
measure. This is not a mathematical assertion, but a broad claim about the
behavior of researchers. Readers may discover its limitations by testing it
against their experience of their field.

5. A second possible empirical counterpart of alternative common factors
would be scores on alternative, sufficiently long, singly conforming tests,
each of which fits the single-factor model with a set of marker variables,
while jointly they give a Heywood case. Analysis at the item level will
reveal a factorial complexity that shows that the items are not themselves
singly conforming.

This completes the summary. Some final speculations now follow. Consider

the empirical status of the item-domain conception. It is surely immediately

clear that we can invent examples of item sets the denotations of which limit
them to a small number of possible distinct elements, although the examples
that easily come to mind are knowledge tests with a flavor of triviality about
them, such as—noted above—knowing the signature keys of the (m=9)
Beethoven symphonies. In principle, vocabulary and arithmetic tests offer
domains with clear denotations that few would hesitate to regard as approach-
ing the infinitely large, although rational and empirical analysis of their facets
will show that the entire domains are multidimensional. Knowledge of the
_ keys of the (m=104) Haydn symphonies—also noted above—falls somewhere
between these extremes. Readers are invited to consult their experience to see
how they would settle the likely order of magnitude of a denoted domain of
item stems and to see if they agree that this will vary widely from case to case.
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As implied above, a rather weak test we might apply is whether given m
items, we can see how to write an (m+1)st item “of the same kind.” This is at
least a test that we do indeed possess an abstract concept. It is then tempting,
although not clearly safe, to suppose that this process can be iterated. That it
can be done at all is a weak but important requirement. That it can be iterated
indefinitely is a desirable, but strong requirement. We might estimate on a
good empirical basis, or in imagination, the number M of items that could be
written and tested, given time—the finite universal set from which we suppose
our m items are drawn—and use the Spearman-Brown formula to establish the
reliability p? of the M items. We might then consider taking 2 p2, -1 for the

minimum correlation between possible factors of the universal set. But if there
are not, ex hypothesi, going to be any more, there is no empirical meaning to
such alternative factors as further limiting extensions.

The primary objective of this article is to set out relationships between item
domains, some standard methods in psychological measurement, and the
determinacy of psychological attributes. It might be claimed that this objective
has been attained at least in sketchy outline. The balance of argument suggests
that the justification, in applications, of common-factor or item-response
models requires the idealization represented by a denotable infinite item do-
main. It is not enough to engage in wishful thinking and suppose that such a
domain always exists. It can be suggested that (a) researchers should try to
make the a priori denotation of an attribute—trait, state, attitude—as precise as
possible, implying a clear prescription of exemplar items; (b) they should try to
work with attributes for which a “large” number of indicator items can be
conceived in principle; and (c) they should avoid exploratory methods of
analysis and test extension as far as possible. This is a counsel of perfection and
possibly too limiting. The perhaps unsatisfying last word for now is that the
infinite item domain will approximate some applications well enough, others
not well enough, and some not at all. On the face of it in the latter case we seem
to lack an acceptable treatment of the problem of error in the measurement of a
psychological attribute. The first question the test constructor must ask is
whether a conceptual item domain exists for the attribute to be measured, and
if it can reasonably be thought of as large. An honest recognition is needed that
the answer may be No.
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