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Applying the Breslow-Day Test of Trend
in Odds Ratio Heterogeneity
to the Analysis of Nonuniform DIF

This article applies the Breslow-Day test of trend in odds ratio heterogeneity (BD) to the
detection of nonuniform DIF. A simulation study was conducted to assess the power and
Type I error rate of BD, as well as a combined decision rule (CDR) whereby a decision of the
existence of DIF was based on a combination of the decisions made using BD and the
Mantel-Haenszel chi-square. The results indicated that CDR displayed good Type I error
rate and power across a variety of conditions. Comparing these results with those of earlier
research indicates that CDR may yield more accurate decisions about DIF than other
commonly used DIF detection procedures.

Item bias is an important consideration when assessing the validity of achieve-
ment tests. Typically, the presence of item bias is assessed using the framework
of differential item functioning (DIF), defined as a difference in measurement
properties of an item for two groups (Camilli & Shepard, 1994; Dorans &
Holland, 1993; Hanson, 1998). By convention, the item under investigation is
referred to as the studied item, and the groups being compared are referred to
as the reference and focal groups. The existence of DIF can be assessed using a
variety of statistical procedures, including item response theory (Lord, 1980),
logistic regression (Swaminathan & Rogers, 1990), and contingency-table
methods (Camilli & Shepard, 1994; Dorans & Holland, 1993; Holland & Thayer,
1988). Descriptions of DIF detection procedures for dichotomous items are
provided by Camilli and Shepard (1994), Clauser and Mazor (1998), Hills
(1989), and Millsap and Everson (1993).

An important distinction to be made when conceptualizing DIF is that
between uniform and nonuniform DIF. Uniform DIF exists when the level of
DIF is independent of ability level. If the level of DIF is quantified using the
odds ratio (the ratio of odds of correct response for the reference group over
that of the focal group), then uniform DIF exists when the odds ratio is not
equal to unity, but remains constant across the ability continuum. In contrast,
nonuniform DIF exists when the odds ratio varies systematically across the
ability continuum. Under certain conditions, nonuniform DIF may lead to the
situation whereby one group displays a strong relative advantage at one end of
the ability continuum, and the second group displays a strong relative ad-
vantage at the opposite end of the ability continuum. This form of nonuniform

. DIF is typically referred to as crossing-nonuniform DIF. In the context of item
response theory (IRT), uniform DIF exists when there is a between-group
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difference in the b parameters only, nonuniform DIF exists when there is a
between-group difference in the a parameters (regardless of any between-
group difference in the b parameters), and crossing-nonuniform DIF exists
when there is a between-group difference in the a parameters but no substan-
tial difference in the b parameters.

Determining whether DIF is nonuniform, and in particular crossing-non-
uniform, is an important step in DIF analyses. This importance stems from the
fact that many of the commonly employed DIF detection procedures work
under the assumption that the DIF is uniform; for example, the Mantel-
Haenszel common odds ratio (Dorans & Holland, 1993; Holland & Thayer,
1993; Mantel & Haenszel, 1959), the Mantel-Haenszel chi-square (Camilli &
Shepard, 1994; Mantel & Haenszel, 1959), SIBTEST (Shealy & Stout, 1993), the
standardized p-difference (Dorans & Kulick, 1986), and ANOV A-based meth-
ods (Whitmore & Schumacker, 1999). As a result, many of the most popular
methods for detecting DIF have unacceptably low power for detecting non-
uniform DIF. For example, Swaminathan and Rogers (1990) showed the Man-
tel-Haenszel procedure to be completely ineffective at detecting crossing-non-
uniform DIF, having a power equal to the nominal Type I error rate. Although
uniform DIF is observed more frequently than nonuniform DIF, nonuniform
DIF has been identified in applied DIF analyses (Hambleton & Rogers, 1989),
and thus is a possible threat to item validity.

Several procedures have been developed for detecting nonuniform DIF,
including logistic regression (Narayanan & Swaminathan, 1996; Swaminathan
& Rogers, 1990), crossing SIBTEST (Li & Stout, 1993), and a split Mantel-
Haenszel procedure (Mazor, Clauser, & Hambleton, 1994). Although these
procedures display good power for detecting nonuniform DIF, they have
several disadvantages that hamper their practical utility. The most severe
disadvantage is that of an inflated Type I error rate; that is, the logistic regres-
sion procedure has displayed a Type I error rate that was on the order of two
(Narayanan & Swaminathan, 1996) and seven (Whitmore & Schumacker, 1999)
times as great as the intended nominal alpha level; the crossing SIBTEST
procedure displayed a Type I error rate that was on the order of two times as
great the nominal alpha level (Narayanan & Swaminathan, 1996); and the split
Mantel-Haenszel procedure displayed a Type I error rate that was in the order
of five times as great as the nominal alpha level (Marafi6én, Garcia, & Costas,
1997). In addition, some of these procedures, such as the logistic regression
method, require iterative parameter estimation and thus are computationally
demanding. These disadvantages suggest the need for a computationally
simple procedure for assessing nonuniform DIF that maintains an acceptable
Type I error rate and relatively high power under a variety of conditions.

Breslow and Day (1980) proposed a method for assessing trends in odds
ratio heterogeneity that can be applied to the analysis of nonuniform DIF. This
procedure has a noniterative solution and may prove to have a power and
Type I error rate that is superior to those of earlier proposed methods. This
article describes the Breslow-Day procedure and its application to the detection
of nonuniform DIF. In addition, because pilot simulations showed that the
Breslow-Day procedure displayed strong power under conditions for which
the Mantel-Haenszel chi-square did not, and the Mantel-Haenszel chi-square
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displayed strong power under conditions for which the Breslow-Day proce-
dure did not, a procedure using the results of both methods in combination to
make statistical decisions about DIF is also proposed. The results of a simula-
tion study examining the power and Type I error rates of these procedures are
reported and compared with results obtained in earlier research for logistic
regression and crossing SIBTEST.

The Breslow-Day and Related Procedures
The Breslow-Day Procedure
Let us estimate ability using the total test score X and denote a particular
stratum of test score by k, where k =1, ..., K. Then the responses to the studied
item of the N, individuals at the kth stratum can be organized in a 2 x 2 table as
shown in Table 1.

The relative performance of the reference and focal groups at the kth
stratum can be assessed by considering the ratio of odds of correct response for
the members of the two groups at stratum k, y,. This odds ratio can be es-
timated using

a4,
bic,

‘?’k=

One method to investigate the presence of nonuniform DIF compares the
observed values of 4, to those expected under the null hypothesis of uniform
DIF. This method is developed as follows. If we treat the marginal values at
each stratum as fixed, then at the kth stratum the distribution of g, follows a
noncentral hypergeometric distribution given by
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where vy, is the noncentrality parameter (which is equal to the odds ratio at
stratum k), and u takes on all possible values of 4, given the configuration of the
marginal totals, namely, (0,7, — n;) < u < (n,ng). When y, = 1, Equation 1
reduces to the familiar hypergeometric distribution. If the number of observa-
tions at stratum k are relatively large, we can approximate the distribution of a,
by a normal distribution, centered at the expected value of 4,. Let us denote the
asymptotic expectation for 4, by A,, and similarly for the other three cells of
Table 1 by B,, C,, and D,. For fixed marginals, once A, is known, the expected
values of the other three cells can be obtained by

P@, | ng, ng, ny, ny) =

B, = ng — Ay

C,=ny—A;, and

D,=ng—n, +A,.

Assuming that y is constant across all K strata, and using these expectations,

the asymptotic odds ratio at stratum k can be expressed as
_AD, Ay - ny+ A

= B.C, (g — A) (ny— A)

@)
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Table 1
Responses to the Studied Item by Group Membership
Response
Group 1 0 Total
Reference ay by Nak
Focal Ck dy Neg
Total Ny Nok Ny

Expanding Equation 2 and setting the result equal to zero yields
A1 - W)+ Alng — ny+ Wng+ Yny)— Yigny=0, ©)

which is quadratic with respect to A,. If the asymptotic odds ratio (y) is known,
then A, can be obtained by solving the quadratic equation shown in Equation 3
using

— = W (1) 2V = 1+ Yy + Y2+ 41— W) (g 1Y)

2(1-w) )
Only one root yields possible values of A, in the sense that A,, B,, C,, and D, are
all nonnegative. Note that A, represents the expected value of a, under the
assumption of homogeneous odds ratios, which is equivalent to the condition
of uniform DIF.

As the odds ratios become more heterogeneous (the nonuniformity of DIF
increases), we expect larger deviations between a4, and the expected value
under the assumption of homogeneity (A,). Thus a test for nonuniform DIF can
be constructed by considering the deviations between g, and A,. This strategy
was adopted by Breslow and Day (1580), giving the test statistic

X 2
[ Z Xia, - Ak)]
k=1

n
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where X, is the value of the kth level of the stratifying variable, A, is the
asymptotic expected value of 4, given by the solution of Equation (3), and V(a,)
is the asymptotic variance of 4, given by

1
1 1 1 1
Via) = [Ak+ Bk+ Ck+ DJ.
The statistic BD is the Breslow-Day test for trend in odds ration heterogeneity
(Breslow & Day, 1980) and is distributed approximately as chi-square with one
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degree of freedom. If the Xs are interval or ratio in scale, a continuity correction
can be used in the numerator before squaring. In the context of DIF detection,
X represents the level of proficiency, which can be estimated using the total test
score.

In computing A, several options can be used to estimate y. The uncondi-
tional maximum likelihood estimate can be used, but has the drawbacks of
requiring large stratum sizes and being biased, with an asymptotic value
equaling the square of the population odds ratio (Breslow & Day, 1980). An
alternative strategy that is recommended by Breslow and Day is to use the
Mantel-Haenszel estimate of the common odds ratio. Descriptions of the com-
putation and interpretation of the Mantel-Haenszel common odds ratio in the
context of DIF detection are provided by Camilli and Shepard (1994) and
Dorans and Holland (1993). The Mantel-Haenszel common odds ratio has the
advantages of being computationally simple and asymptotically unbiased.
This article uses the Mantel-Haenszel estimate of the common odds ratio in
computing BD.

It should be noted that Breslow and Day (1980) also proposed a global test
of odds ratio heterogeneity, T, that is distributed approximately as chi-square
with K-1 degrees of freedom when the number of observations per stratum is
large. The statistic T has several known drawbacks. First, because it is a global
statistic it cannot assess the specific alternative that there is a systematic in-
crease or decrease in the odds ratios across the ability continuum, as would be
the case in nonuniform DIF. Second, if there are relatively few observations per
stratum, T may not approximate the nominal chi-square distribution, even
when the null hypothesis of homogeneity holds. Pilot simulations showed that
unless the sample sizes were very large (e.g., > 2000), T had very low power,
rarely exceeding .20. As a result, the utility of T in detecting nonuniform DIF is
not pursued in this article.

The Combined Decision Rule Procedure
The Mantel-Haenszel chi-square (MH) is known to be the most powerful test of
uniform DIF (Cox, 1988), but has been shown to be relatively ineffective at
detecting crossing-nonuniform DIF when the item difficulty was medium
(Narayanan & Swaminathan, 1996; Swaminathan & Rogers, 1990). The formula
required for computing MH is presented in the context of DIF detection by
Camilli and Shepard (1994). Because pilot simulations indicated that the power
of BD for detecting crossing-nonuniform DIF tended to be relatively high when
the difficulty of the studied item was medium, but decreased substantially as
the difficulty of the studied item became more extreme, it was of interest to
determine the extent to which a decision rule based on a combination of the
individual decisions made according to BD and MH could maintain high
power and adequate Type I error rates across all levels of studied item difficul-
ty. This combined decision rule is denoted here by CDR. The CDR accepts the
null hypothesis of no DIF if both BD and MH lead to decisions of accepting the
null hypothesis, and the CDR rejects the null hypothesis of no DIF if either BD
or MH leads to a decision of rejecting the null hypothesis.

The CDR procedure is based on the results of two statistical tests, and as
such the significance level used for each test of the CDR procedure requires
correction to obtain the intended nominal Type I error rate. I recommend the

235



R.D. Penfield

use of the Bonferroni correction (Mendenhall, Scheaffer, & Wackerly, 1986),
whereby the intended nominal Type I error rate is divided by the number of
individual tests conducted (in this case, two) to arrive at the per-test sig-
nificance level for the CDR procedure. That is, if a nominal Type I error rate is
set to .05 (ot = .05), then the CDR procedure assesses DIF using BD and MH with
o = .025. The Bonferroni correction is commonly used to adjust the per-test
significance level when multiple tests are conducted on the same data (Keppel,
1991) and has also been proposed to adjust the per-test significance level when
multiple tests of DIF are conducted on the same item (Penfield, 2001).

Method

A simulation study was conducted to assess the power and Type I error rate of
BD, MH, and CDR under a variety of conditions. A secondary purpose of the
simulation study was to permit a comparison of the power and Type I error
rate of BD and CDR to that observed for crossing SIBTEST and logistic regres-
sion as reported in Narayanan and Swaminathan (1996). To this end, many of
the properties of the simulation study conducted here follow the methods
employed by Narayanan and Swaminathan. Although there are some differen-
ces in the simulation methods used here to those of Narayanan and
Swaminathan, the methods were viewed as being similar enough to permit a
clear comparison of the performance of crossing SIBTEST and logistic regres-
sion to the procedures presented here.

Simulation Procedures

An artificial test was constructed of 40 dichotomous items. One of the 40 items,
the studied item, was tested for DIF using BD, MH, and CDR. For each item,
responses were generated by (a) drawing a random variate from a normal
distribution with mean p and standard deviation of one, (b) determining the
probability (P) of correct response on the item according to the three-parameter
IRT model (Lord, 1980), (c) drawing a random variate (U) from a uniform
distribution on the interval 0 to 1, and (d) assigning a response of 1 if P> U and
Oif P<U.

The parameters of the nonstudied items were assigned as follows: each ¢
parameter value was set to 0.2, each b parameter was sampled from N(0, 1), and
each a parameter was set to exp(z), where z was sampled from N(0, 0.1225).
These parameter distributions are consistent with those used in earlier research
and represent realistic distributions of item parameters (Donoghue & Allen,
1993; Zwick, Donoghue, & Grima, 1993). For the studied item, the ¢ parameter
was assigned a value of 0.2, and the b and # parameters were fixed as described
below.

To investigate the performance of BD, MH, and CDR under a variety of
conditions, the following factors were manipulated: DIF effect size, equality of
group ability distributions, sample size, the difficulty of the studied item, and
the discrimination of the studied item. Each of these factors is discussed below.

Magnitude of nonuniform DIF. The magnitude of nonuniform DIF introduced
into the studied item was determined by the area between the item charac-
teristic curves of the reference and focal groups. This area is used as an index of
DIF effect size (represented by A) and is obtained using the derivations pro-
vided by Raju (1988). Five levels of effect size were used: A=0.0,A=0.4,A=0.6,
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A =0.8, and A = 1.0. The case of A =0 is used to assess the Type I error rates of
BD, MH, and CDR. For each effect size, two sets of a2 parameters were used; one
set where the a parameters were relatively low (Low-a condition), and one set
where the a parameters were relatively high (High-a condition). The values of
the a parameters in the low and high conditions are displayed in Table 2. For A
=04, 0.6, 0.8, and 1.0 the values of a; and a; are identical to those used by
Narayanan & Swaminathan (1996). For A = 0.0, the values of 4, and a, were
both set to 0.66 under the Low-a condition and 1.26 under the High-a condition.
The value of 0.66 equals the mean of all eight values of 4; and 4, in the Low-a
condition, and the value of 1.26 equals the mean of all eight values of 4, and a,
in the High-a condition. '

Equality of group ability distributions. It is often the case that the ability
distributions of the reference and focal groups have unequal means. To ex-
amine the effect of the equality of group ability distributions on the procedures
being studied, two levels of equality were used. In the first level the groups had
equal means (U, = p; = 0), and in the second level the focal group had a mean
that was one standard deviation below the mean of the reference group (u; =0
and p, =-1).

Group size. Four levels of group size were investigated in this study: (a) Ny =
500 and N = 200, (b) N =500 and N =500, (c) N; = 1,000 and N, =200, and (d)
Ng =1,000 and N = 500. These levels are representative of sample sizes found in
practical testing situations, and are identical to those employed by Narayanan
and Swaminathan (1996).

Difficulty of the studied item. Three levels of difficulty of the studied item
were investigated: b =-1.5, 0.0, 1.5. These levels are identical to those employed
by Narayanan and Swaminathan (1996).

Discrimination of the studied item. Two levels of discrimination of the studied
item were investigated: a low discrimination level (Low-2) and a high dis-
crimination level (High-a). The values of the a parameters for the focal and
reference groups varied depending on the level of effect size, as displayed in
Table 2. However, for each level of effect size, there are two levels of 4 paramet-
ers corresponding to the Low-2 and High-a conditions.

This design yielded 240 conditions (5 levels of effect size x 2 levels of ability
distribution equality x 4 levels of sample size x 3 levels of studied item difficul-
ty x 2 levels of studied item discrimination). Each condition was replicated
1,000 times, and across the 1,000 trials the proportion of trials for which the null
hypothesis of no DIF was rejected was recorded for BD, MH, and CDR proce-
dures. These proportions serve as estimates of the power and Type I error rates
of each procedure. The nominal Type I error rate used for the tests of DIF using
BD and MH in isolation was .05, and the nominal Type I error rate used for BD
and MH in the CDR test of DIF was .025 (thus employing the Bonferroni
correction). In all conditions, b, = by, for all items, including the studied item,
and thus all simulated DIF was of the crossing-nonuniform type.

Accommodating Empty Strata

It is occasionally the case that strata contain no data for either the reference
group or the focal group, particularly for strata at the extreme ends of the test
score continuum. For such strata the calculation of an odds ratio is impossible
due to the presence of fractions with denominators with values of zero. A
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Table 2
Values of the a Parameters for the Studied ltem
Low-a High-a
Effect Size (A) ar ap ar agp
0.0 0.66 0.66 1.26 1.26
0.4 0.72 0.50 2.01 0.90
0.6 0.80 0.46 1.97 0.70
0.8 0.91 0.43 1.79 0.56
1.0 1.03 0.40 1.68 0.47

Note. For the condition in which A = 0, the values of a equal the mean of the a values in other
four effect size condition across both the reference and focal groups.

commonly employed strategy to accommodate empty cells is to add the value
of 0.5 to each cell of Table 1, thus avoiding zero denominators (Agresti, 1990).
This strategy is inadequate in the context of DIF, as it leads to grossly inflated
Type I error rates of contingency table methods of DIF detection (such as MH
and BD) when the ability distributions of the reference and focal groups differ.
As a result, this simulation study employed the strategy of omitting from the
analysis the data from any strata for which either the reference or focal group
had a zero frequency.

Differences from the Methods of Narayanan and Swaminathan (1996)

Although this study used a simulation procedure that was nearly identical to
that of Narayanan and Swaminathan (1996), there were two subtle differences.
First, the values of the a parameters when A = 0 were not reported in
Narayanan and Swaminathan (1996), and thus were probably not identical to
those used here. However, because the values of the a parameters used here
when A = 0 were equal to the average value of those used in the other levels of
effect size, it seems likely that similar values would have been used by
Narayanan and Swaminathan. Second, Narayanan and Swaminathan inves-
tigated the effect of matching criterion contamination, and thus introduced
nonuniform DIF into varying numbers of items on the test. For realistic levels
of contamination (10%-20% of the items displaying DIF), this effect was shown
to have little effect on the power and Type I error rate of logistic regression,
crossing SIBTEST, and MH (Narayanan & Swaminathan), as well as on other
DIF detection procedures (Penfield, 2001). As a consequence, the effect of
matching criterion contamination was not expected to have a substantial effect
on the performance of CDR, and was not studied in this simulation.

Results

Type I Error Rates

Table 3 presents the Type I error rates for BD, MH, and CDR as a function of
group size, item type, and equality of the reference and focal group ability
distributions. Inspection of the Type I error rates indicates that all procedures
maintained Type I error rates that were consistently at or below the nominal
level of .05 when group ability distributions were equal, and consistently near
the nominal level of .05 when group ability distributions were unequal. In
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Table 3
Type | Error Rate as a Function of Sample Size and Item Type
HR—MF=0 Hp—Mp=1

Factor BD MH CDR BD MH CDR
Sample Size

Ng =500, Ng = 200 .01 .05 .04 .02 .06 .04
Ng =500, N =500 .01 .05 .03 .02 .07 .05
Ng=1,000, Ne=200 .02 .06 .04 .02 .07 .04
Ng=1,000, Ne=500 .02 .06 .03 .02 .08 .05
Item Type

Low-b, High-a .00 .05 .03 .00 .09 .04
Med-b, Low-a .02 .06 .04 .02 .06 .04
Med-b, High-a .00 .05 .03 .01 .06 .03
High-b, Low-a .04 .06 .04 .05 .08 .07

Note. BD, MH, and CDR correspond to the Breslow-Day test, the Mantel-Haenszel chi-square,
and the combined decision rule respectively.

general, MH and CDR displayed Type I error rates that were higher than that
of BD, particularly in the conditions for which the discrimination of the studied
item was high (High-a). Of most importance to this study is the observation
that the Type I error rate of CDR remained at or below the nominal level of .05
for all conditions except one (High-b, Low-a, u, — u; = 1), for which the Type I
error rate equaled .07.

Power

Table 4 displays the power of BD, MH, and CDR as a function of group size,
effect size, item type, and difference between the ability distributions of the
reference and focal group. These results indicate three general trends in the
power rates. First, the power of BD was relatively low when the studied item
difficulty was extreme (Low-b and High-b) and relatively high when the
studied item difficulty was moderate (Med-b). Second, the power of MH
showed an inverse relationship to that of BD, being very low when the studied
item difficulty was moderate, and relatively high when the studied item dif-
ficulty was extreme. This result confirms the findings of pilot simulations and
suggests that a combined use of BD and MH would provide high power across
all levels of studied item difficulty. The third result of interest is that the power
of CDR was consistently high across all levels of studied item difficulty and
discrimination. The power of CDR tended to be higher for High-a than Low-a
conditions, and higher for conditions with equal group ability distributions
than unequal group ability distributions. In addition, the power for all three
procedures was more dependent on the presence of a small group size than on
the combined number of reference and focal group members; that is, the power
" was higher for Ny = N; =500 (combined group size of 1,000) than for N, = 1,000
and N; = 200 (combined group size of 1,200).
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Table 4
Power as a Function of Sample Size, Effect Size, and ltem Type
M=M= 0 Hr—Hg= 1

Factor BD MH CDR BD MH CDR
Sample Size

Npg = 500, Ng = 200 .30 .39 .50 .20 .33 .36
Ng = 500, Ng= 500 45 44 b4l .37 45 54
Ng=1,000, Ne.=200 .40 M .58 .30 .36 45
Ng=1,000, N-=500 .57 47 .80 .50 49 .66
Effect Size

A=04 A7 .32 .37 10 21 .20
A=06 .36 41 59 27 .37 .43
A=08 54 47 .76 45 .48 .62
A=1.0 .65 51 .87 .56 57 .76
Item Type

Low-b, High-a .43 .96 .95 .46 .81 78
Med-b, Low-a 52 .06 45 37 10 32
Med-b, High-a 72 .07 .65 51 .23 .50
High-b, Low-a .05 62 55 .04 .49 42

Note. BD, MH, and CDR correspond to the Breslow-Day test, the Mantel-Haenszel chi-square,
and the combined decision rule respectively.

Comparing CDR to Logistic Regression and Crossing SIBTEST
The results of the simulation study indicated that although BD and MH were
effective in detecting nonuniform DIF under specific conditions, CDR was
consistently effective across all conditions. Because CDR appears to hold the
greatest potential for improving the available methodology for DIF detection,
it was of interest to compare the performance of CDR with other popular
methods for detecting nonuniform DIF. Table 5 presents a comparison of the
Type I error rate and power of CDR with that obtained for logistic regression
and crossing SIBTEST in earlier research (Narayanan & Swaminathan, 1996).
The observed Type I rate of CDR was .04 across all conditions, substantially
lower than the Type I error rates of approximately .09 observed for logistic
regression and crossing SIBTEST across a nearly identical set of conditions. As
a result, CDR appears to have a clear advantage in terms of Type I error rate.
With respect to power, the values obtained for CDR displayed in Table 5 are
slightly lower than those obtained for logistic regression and crossing SIBTEST.
The average difference in power between CDR and logistic regression was .05,
and between CDR and crossing SIBTEST was .10. The largest discrepancies in
power between CDR and the other two procedures occurred when group sizes
were small (N; = 500 and N; = 200) and the studied item difficulty and
discrimination were medium and high, respectively (Med-b, High-2). When the
group sizes were larger (N = 1,000 and N, = 500), CDR displayed a power that
was only .02 below that of logistic regression and .06 below that of crossing
SIBTEST.
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Table 5
Comparing the Type | Error Rate and Power of CDR to Logistic Regression
and Crossing SIBTEST
Type | Error Rate Power

Factor CDR LR siB CDR LR siB
Sample Size

Ng = 500, Ng =200 .04 .08 .08 .43 52 .58
Ng = 500, Ng = 500 .04 .08 .09 .63 .70 72
Ng=1,000, Ne.=200 .04 .09 .08 52 57 .62
Ng=1,000, Nz.=500 .04 .09 .09 73 .75 79
Item Type

Low-b, High-a .04 10 A1 .87 .90 .88
Med-b, Low-a .04 .08 .08 .39 44 47
Med-b, High-a .03 .09 .09 .58 70 77
High-b, Low-a .05 .06 .07 49 48 59

Note. Reported values for sample size were obtained by collapsing across all conditions other
than sample size, and reported values for item type were obtained by collapsing across all
conditions other than item type. Values for logistic regression (LR) and crossing SIBTEST (SIB)
were obtained from Narayanan and Swaminathan (1996), in which 100 trials were run for each
condition.

Discussion

This study investigated the power and Type I error rate of the Breslow-Day test
of trend in odds ratio heterogeneity (BD) and a combined decision rule (CDR)
that is based on the outcomes of both BD and the Mantel-Haenszel chi-square
(MH). A simulation study led to two general results regarding the power and
Type I error rate of BD and CDR. First, BD used in isolation maintained a
subnominal Type I error rate across all conditions and a high power when the
studied item difficulty was moderate. Second, CDR maintained a Type I error
rate at or below the nominal level across nearly all conditions and also dis-
played consistently high power across all levels of studied item difficulty. A
comparison of the power and Type I error rate of CDR with those obtained for
logistic regression and crossing SIBTEST in earlier research (Narayanan &
Swaminathan, 1996) indicated that CDR displayed a Type I error rate that was
consistently more than 50% lower than that of the other two procedures (.04 vs.
approximately .09) and that CDR displayed a power that was slightly lower
than that of the other procedures.

The results of this study clearly indicate that CDR has a Type I error rate
that is superior to that of logistic regression and crossing SIBTEST. However,
the inflated Type I error rates of logistic regression and crossing SIBTEST
hamper a comparison of their power with that of CDR and thus prevent a clear
conclusion concerning their relative effectiveness in practice. Narayanan and
" Swaminathan (1996) provided an estimate of the significance level required for
logistic regression and crossing SIBTEST to obtain an observed Type I error
rate of .05. For both procedures the corrected significance level appears to be
approximately .025. It is currently unknown what the power of logistic regres-
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sion and crossing SIBTEST would be if this corrected significance level were
used, but it is expected to be lower than that reported by Narayanan and
Swaminathan. My simulations showed that a change in the significance level
from .05 to .025 led to a decrease in power of BD and MH by approximately .10
(although this value varied greatly depending on the condition, sometimes
being as little as .01 and other times being as great as .20). If the power of
logistic regression and crossing SIBTEST are affected similarly to that of BD
and MH, then the power of logistic regression and crossing SIBTEST using the
corrected significance level would be expected to be lower than that of CDR.
Further research is required to understand better how the power of logistic
regression and crossing SIBTEST using a corrected significance level compares
with that of CDR.

This study demonstrated the good Type I error rate and relatively strong
power exhibited by the CDR procedure for detecting crossing-nonuniform
DIF. This result, in combination with the fact that MH is known to be the most
effective method for detecting uniform DIF (Camilli & Shepard, 1994; Cox,
1988), suggests that CDR may be the single most effective method for simul-
taneously detecting uniform and nonuniform DIF in dichotomous items. Be-
cause CDR has the added advantage of being computationally simple relative
to other procedures that require an iterative parameter estimation algorithm,
such as logistic regression and IRT methods, CDR appears to be an attractive
alternative to other procedures currently in use.

The use of CDR in DIF detection analyses may improve the ability of test
developers to identify items that contain bias. Because currently employed
methods of DIF detection are poor at simultaneously detecting uniform and
nonuniform DIF, CDR offers test developers a means to assess each item for a
large variety of forms of DIF and thus a highly powerful method of assessing
each item for bias. The use of CDR to improve the detection of biased test items
may ultimately lead to an improvement in the validity of test scores.
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