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ABSTRACT. We analyzed data from line-transect aerial surveys for marine mammals conducted in the western Beaufort Sea 
(shore to 72˚ N, 140˚ – 157˚ W) from July to October of 2009 – 16 to investigate the distribution, behaviors, sighting rates, and 
habitat use preferences of bowhead and beluga whales. The habitat use data allowed for direct comparison with data collected 
in the same area from 1982 to 1991. Both species are ice-adapted, migrating through leads in sea ice in spring, and are seasonal 
inhabitants of the western Beaufort Sea during summer and fall. From 2009 to 2016, bowhead whales were seen in all survey 
months, with the highest overall sighting rate (whales per km) in August. Bowhead sighting rates were highest in the whales’ 
preferred habitats: outer shelf habitat (51 – 200 m depth) in July and inner shelf-shallow habitat (≤ 20 m depth) in August, 
September, and October. Beluga whales were also seen in all survey months, with highest overall sighting rate in July. Beluga 
whales were overwhelmingly associated with continental slope habitat (201 – 2000 m depth) in all months. Bowhead whale 
distribution and depth preferences in summer months of 2009 – 16 differed from those observed in 1982 – 91, when bowheads 
were not seen during limited survey effort in July and preferred outer continental shelf habitat in August. These differences 
indicate that bowhead whale preference for shallow shelf habitat now occurs earlier in summer than it used to. Beluga whale 
distribution and depth preference remained similar between 1982 – 91 and 2009 – 16, with strong preference for continental 
slope during both periods. Differences in sea ice cover habitat association for both species are likely due more to the relative 
lack of sea ice in recent years compared to the earlier period than to shifts in habitat preference. Habitat partitioning between 
bowhead and beluga whales in the western Beaufort Sea remained evident except in July, when both species used continental 
slope habitat. In July – October 2009 – 16, the distribution, sighting rates, and behavior of both bowheads and belugas in 
the western Beaufort showed considerable interannual variation, which underscores the importance of annual sampling to 
accurate records of the complex western Beaufort Sea ecosystem.
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RÉSUMÉ. Nous avons analysé les données découlant de levés aériens de transects linéaires pour mammifères marins, levés 
effectués dans l’ouest de la mer de Beaufort (de la rive jusqu’à 72˚ N, et de 140˚ jusqu’à 157˚ O) de juillet à octobre 2009 à 
2016. Ces levés avaient pour but d’étudier la distribution, les comportements, les taux d’observation ainsi que les préférences 
d’utilisation de l’habitat des baleines boréales et des bélugas. Les données relatives à l’utilisation de l’habitat ont permis 
d’établir des comparaisons directes avec les données recueillies dans le même secteur de 1982 à 1991. Ces deux espèces sont 
adaptées à la glace, migrent par des chenaux formés dans la glace de mer au printemps et sont des habitants saisonniers de 
l’ouest de la mer de Beaufort pendant l’été et l’automne. Entre 2009 et 2016, des baleines boréales ont été aperçues pendant 
tous les mois visés par les levés, le taux d’observation général le plus élevé (nombre de baleines par km) ayant été enregistré au 
mois d’août. Les taux d’observation des baleines boréales étaient les plus élevés dans les habitats préférés de ces baleines, soit 
l’habitat de la plateforme externe (de 51 m à 200 m de profondeur) en juillet et l’habitat de la plateforme interne peu profonde 
(≤ 20 m de profondeur) en août, en septembre et en octobre. Des bélugas ont également été aperçus pendant tous les mois 
visés par les levés, le taux d’observation général le plus élevé ayant été enregistré en juillet. Les bélugas étaient massivement 
associés à l’habitat de la pente continentale (de 201 m à 2 000 m de profondeur) pendant tous les mois. La distribution et 
les préférences de profondeur des baleines boréales pendant les mois d’été 2009 à 2016 différaient de celles observées de 
1982 à 1991, lorsque les baleines boréales n’ont pas été aperçues dans le cadre des quelques levés qui ont été effectués en 
juillet et préféraient leur habitat de la plateforme continentale externe en août. Ces différences indiquent que la préférence 
des baleines boréales pour l’habitat de la plateforme peu profonde se manifeste maintenant plus tôt l’été qu’auparavant. De 
1982 à 1991 et de 2009 à 2016, la distribution des bélugas et leur préférence de profondeur sont restées semblables, avec une 
préférence marquée pour la pente continentale pendant les deux périodes. Pour les deux espèces, les différences sur le plan 
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de l’association de la couverture de glace marine sont vraisemblablement davantage attribuables au manque relatif de glace 
de mer ces dernières années comparativement à la période précédente plutôt qu’à une variation de la préférence de l’habitat. 
Dans l’ouest de la mer de Beaufort, la séparation de l’habitat entre les baleines boréales et les bélugas demeurait évidente, sauf 
en juillet, quand les deux espèces utilisaient l’habitat de la pente continentale. De juillet à octobre 2009 à 2016, la distribution, 
les taux d’observation et le comportement des baleines boréales et des bélugas dans l’ouest de la mer de Beaufort ont affiché 
une variation considérable d’une année à l’autre, ce qui fait ressortir l’importance de faire des échantillonnages annuels afin 
d’obtenir des données précises au sujet de l’écosystème complexe de l’ouest de la mer de Beaufort.

Mots clés  : baleine boréale; Balaena mysticetus; béluga; Delphinapterus leucas; Arctique; mer de Beaufort; habitat; levé 
aérien; alimentation

	 Traduit pour la revue Arctic par Nicole Giguère.

INTRODUCTION

Widespread ecosystem changes, including dramatic 
decreases in annual summer sea ice, increased duration of 
open water periods, and geographic and temporal variations 
in upwelling-favorable conditions, have altered the seasonal 
habitat encountered by cetaceans in the Pacific Arctic 
(Stroeve et al., 2007; Grebmeier, 2012; Walkusz et al., 2012; 
Wood et al., 2015). Two cetacean species, bowhead whales 
(Balaena mysticetus) and beluga whales (Delphinapterus 
leucas), occur regularly in the Beaufort Sea from mid-
spring through early fall, migrating to the region to feed in 
areas that overlap with offshore oil and gas development. 

Bowhead whales are ice-adapted baleen whales, capable 
of breaking through sea ice at least 18 cm thick (George 
et al., 1989). Bowheads of the Bering-Chukchi-Beaufort 
(BCB) stock typically migrate each spring from wintering 
grounds in the western Bering Sea through leads in the 
sea ice in the eastern Chukchi and western Beaufort Seas 
en route to their summer habitat in the eastern Beaufort 
Sea (Moore and Reeves, 1993; Quakenbush et al., 2013). 
Most of the BCB stock takes advantage of aggregations 
of copepods and euphausiids that occur along areas of 
upwelling near Cape Bathurst and Tuktoyaktuk Peninsula 
in the eastern Beaufort Sea during the open water season 
each year (Walkusz et al., 2012; Citta et al., 2015). During 
the summer months, some bowheads also remain in the 
Chukchi Sea (Melnikov and Zeh, 2007; Quakenbush et 
al., 2010), travel to Canadian High Arctic waters (Heide-
Jørgensen et al., 2012; Quakenbush et al., 2013), or traverse 
the Beaufort Sea multiple times (Christman et al., 2013; 
Quakenbush et al., 2013). Aerial survey, telemetry, and 
passive acoustic monitoring results available to date have 
shown that during the open water season, bowheads tend 
to use western Beaufort shelf habitat shallower than 200 m 
(Moore et al., 2000; Blackwell et al., 2007; Clark et al., 
2015; Clarke et al., 2017). In some parts of their range, they 
exhibit considerable individual variation, including age 
and sex segregation (Koski et al., 1988; Koski and Miller, 
2002; Harwood et al., 2017), and they make multiple stops 
lasting days or weeks at feeding locations offshore of the 
Alaska North Slope, probably after they have already 
spent days to months feeding in the eastern Beaufort Sea 
(Citta et al., 2015; Kuletz et al., 2015; Harwood et al., 2017). 

The bowheads’ westward migration from the eastern 
Beaufort Sea to the northeastern Chukchi Sea is protracted, 
occurring from July through at least early November (Citta 
et al., 2015; Lin et al., 2016). 

Beluga whales are ice-associated toothed whales found 
in Arctic and subarctic habitats. Two stocks, the Eastern 
Chukchi Sea (ECS) stock and the Eastern Beaufort Sea 
(EBS) stock, are found in the Beaufort Sea in mid-spring, 
summer, and fall. Both stocks migrate each spring from 
wintering grounds in the Bering Sea (Citta et al., 2017), 
but migration occurs independently for each stock, and 
each uses unique areas for calving and molting in early 
summer (Richard et al., 2001; Suydam et al., 2001). Belugas 
disperse from coastal molting areas to the deeper waters of 
the Beaufort Sea (Stafford et al., 2013, 2017; Garland et al., 
2015), where distribution is temporally and geographically 
stratified, and overlap between stocks is limited mainly 
to September (Hauser et al., 2014). Distribution is likely 
closely related to prey availability. Belugas feed on fishes, 
including Arctic cod (Boreogadus saida) and saffron 
cod (Eleginus gracilis), and a wide array of invertebrates 
and cephalopods (Seaman et al., 1982; Quakenbush et al., 
2015). Belugas move westward from July through October, 
crossing the Beaufort Sea but traveling seaward of the 
200 m isobath (Moore et al., 2000; Richard et al., 2001). 

From 1982 to 1991, broad-scale aerial surveys were 
conducted annually in the western Beaufort Sea from July 
to October (Moore, 2000; Moore et al., 2000). From 1992 to 
2010, surveys in the western Beaufort Sea were conducted 
mainly in September and October (e.g., Monnett and 
Treacy, 2005; Clarke et al., 2011), primarily to monitor the 
bowhead whale migration. Under the auspices of the Aerial 
Surveys of Arctic Marine Mammals (ASAMM) project, the 
survey period in the western Beaufort Sea was extended to 
mid-August in 2011 and to mid-July from 2012 to 2016. The 
ASAMM project, funded by the Bureau of Ocean Energy 
Management and its precursor, the Minerals Management 
Service, was initially designed to examine the potential 
effects of petroleum exploration and development on 
bowheads in nearshore areas of the western Beaufort Sea. 
While that objective remains an important part of the study, 
ASAMM also documents the distribution and relative 
abundance of all marine mammals, monitors areas of 
importance for behaviors such as calving, pupping, feeding, 
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hauling out, and migrating, and provides a dataset that can 
be used to compare cetacean habitat use over a span of 
more than 30 years. 

In the 1980s, Moore et al. (2000) used aerial survey data 
from the western Beaufort Sea to establish that bowhead 
whales there were associated with moderate ice conditions 
and 51 – 2000 m depths in summer and light ice conditions 
and depths of less than 50 m in fall, while beluga whales 
were associated with moderate to heavy ice and depths 
greater than 200 m in summer and moderate to heavy 
ice and 51 – 2000 m depths in fall. Here, we augment the 
data described in Moore et al. (2000) with an additional 
eight years (2009 – 16) of data from recent aerial surveys. 
We seek to examine broad patterns and variability in the 
distribution of both whale species, between and within 
time periods, and examine relationships of distribution and 
variability patterns to water depth and sea ice. Although 
ASAMM surveys extend into the eastern Chukchi Sea, this 
paper is limited to the western Beaufort Sea to focus on 
areas where the distributions of bowhead and beluga whales 
overlap from July through October. Gray whales, included 
in Moore et al. (2000), were not included here because of the 
paucity of sightings in the Beaufort Sea. Bowhead and gray 
whale distributions, sighting rates, and habitat preferences 
in the eastern Chukchi Sea in 1982 – 91 and 2009 – 15 are 
compared in Clarke et al. (2016). 

METHODS

Surveys and Analysis, 2009 – 16

The study area in the western Beaufort Sea extends from 
shore to 72˚ N and from 140˚ W to 157˚ W. This area totals 
111 700 km2, comprises the eastern portion of the ASAMM 
survey area (Fig. 1) and overlies all of the active petroleum 
leases in the Alaskan Beaufort Sea. Data collected within 
this study area provide the best comparison between recent 
(2009 – 16) and historical (1982 – 91) data on bowhead 
and beluga whales because this area generally coincides 
with the Beaufort Sea study area of Moore et al. (2000), 
although the latter extended north to 73˚ N between 154˚ W 
and 157˚ W, outside of the current ASAMM study area. 
Surveys were flown from mid-July to late October in Turbo 
Commander (2009 – 16) and de Havilland Twin Otter™ 

(2009 – 10) aircraft. All survey aircraft were outfitted with 
bubble windows, which allow detection of marine mammals 
directly under the aircraft. Line-transect aerial surveys 
were flown at 305 to 460 m altitude, maintaining a survey 
speed of approximately 220 km/h. Transects were oriented 
perpendicular to shore in order to sample across isobaths, 
prevailing currents, and expected gradients in marine 
mammal density. Transects were spaced at intervals of one-
half degree of longitude and were derived independently 
for each survey so that unique areas were surveyed during 
every flight. The selection of transects to be flown on 
a given day was not random; it was based on reported or 

FIG. 1. Western Beaufort Sea study area and survey effort (transect plus circling-on-transect kilometers), 2009 – 16. Inset shows the western Beaufort Sea study 
area (outlined in black) relative to the entire ASAMM study area (diagonal stripes).
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observed weather conditions in the study area, avoidance 
of recently surveyed areas, and the need to deconflict with 
other aerial operations or marine subsistence users. In 
general, surveys were planned to distribute effort fairly 
evenly across the survey area. 

The survey protocols described here for 2009 – 16 were 
similar to those used in the historical surveys conducted 
from 1982 to 1991 (although see Clarke et al., 2016 for 
exceptions). Two primary observers, one on each side of 
the aircraft, maintained a continuous watch for marine 
mammals while a third observer/data recorder entered 
data into a laptop computer for each sighting, whenever 
survey conditions changed, or every five minutes. Sightings 
made by primary observers on transect were considered 
on-effort sightings because primary observers were always 
actively searching, while sightings made by non-primary 
observers (e.g., data recorder, pilots) were considered off-
effort. Systematic transect coverage included all depth and 
sea ice habitats without bias toward or against areas with 
the highest likelihood of sightings. The aircraft made brief 
(< 10 min) diversions from transects to circle large whale 
groups to identify whales to species, estimate group size, 
and search for calves. A continuously updated map display 
on the onboard laptop computer minimized the chances that 
duplicate sightings would be recorded during circling or 
after returning to transect. Transits between targeted survey 
areas or transects, or survey effort along transect lines 
when weather was too poor for visual observations, were 
recorded as off-effort. Off-effort sightings and kilometers 
were not included in any analyses. The ASAMM database 
does not specifically identify effort and sightings during 
circling-on-transect events prior to 2009, so those data were 
not included in this analysis.

Data routinely logged when whales were seen included 
time, altitude, latitude, longitude, sea state, sea ice type 
and percent cover, visibility conditions, declination 
angle from the horizon to the sighting to determine the 
whales’ distance from the transect line (not recorded 
during circling), species, number of whales, number of 
calves, sighting cue, whales’ behavior, and initial heading. 
Locations of whales observed during circling events were 
recorded as the position of the aircraft as it flew overhead. 
Behavioral classifications included swim, dive, feed, 
mill, rest, and several types of displays. Feeding was 
inferred when bowhead whales were observed with mud 
on the rostrum or streaming from the mouth, exhibiting 
synchronous diving and surfacing, swimming in echelon 
formation at the surface, or swimming at or near the 
surface with mouth open. Sea state was classified according 
to the Beaufort wind force scale (Maloney, 2006), and sea 
ice cover was estimated as the percentage of the sea surface 
visible to observers that was ice covered. Additional survey 
protocol details are provided elsewhere (e.g., Clarke et al., 
2017).

Sighting rates can be considered a measure of relative 
density because they were not corrected for availability 
or perception bias (Buckland et al., 2001); absolute 

density was not calculated because track line detection 
probability for these surveys is unknown. Sighting rates 
were calculated for each depth zone to compare the 
monthly and seasonal relative densities (whales per km) 
for both bowhead and beluga whales (summer is July and 
August; fall is September and October). Sighting rates were 
computed in two ways. First, to best convey patterns in 
relative density similar to those presented in Clarke et al. 
(2016), both transect and circling-on-transect kilometers 
and whales were used to calculate 2009 – 16 sighting rates 
for each depth zone. Second, for consistency with the 
remaining analyses presented in this paper, sighting rates 
per depth zone were calculated using whales and effort 
limited to sightings on transect only. All on-effort sightings 
from primary observers, regardless of environmental 
conditions, were used in analyses. Data were not collected 
when Beaufort wind force was greater than five, visibility 
conditions were poor, or survey altitude was less than 
305  m. Total distance per depth zone was calculated by 
clipping the transect lines to polygons defined by isobaths, 
using ESRI ArcGIS version 10.1. 

Depth zones generally followed Moore et al. (2000) 
except for the inner shelf region, and correspond to broad 
patterns of Pacific water masses in the Beaufort Sea 
(Aagaard, 1984). Five depth zones were identified: 

	 •	Inner shelf-shallow (14% of study area) is 20 m or less 
deep, encompassing wind-driven surface currents and 
greater influence from freshwater river runoff; 

	 •	Inner shelf-deep (20% of study area) is 21 – 50 m deep, 
encompassing wind-driven currents and less influence 
from freshwater river runoff; 

	 •	Outer shelf (15% of study area) is 51 – 200 m depth, 
encompassing the Beaufort Undercurrent and the 
Beaufort shelfbreak jet (Nikolopoulos et al., 2009); 

	 •	Continental slope (18% of study area) is 201 – 2000 m 
depth, also encompassing the Beaufort Undercurrent;

	 •	Basin (33% of study area) is more than 2000 m deep, 
encompassing the Beaufort Gyre. 

Depth zone boundaries were digitally derived and based 
on depth data in the International Bathymetric Chart of 
the Arctic Ocean (IBCAO) Version 2.23 (Jakobsson et al., 
2008), which had a pixel resolution of 2 km. 

To determine whether the distribution of whales was 
uniform in each month and season with respect to depth, 
permutation tests (Legendre and Legendre, 1998) using the 
chi-squared test statistic, χ2, were used: 

2 =
(Ai Ei )

2

Eii

Ai and Ei respectively are the actual and expected number 
of whales observed on transect per depth zone category i. 
Under the null hypothesis that whales were distributed 
uniformly throughout the study area, the expected number 
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of whales is directly proportional to transect survey 
effort. Therefore, Ei was computed as the total number of 
whales observed on transect in the study area multiplied 
by the proportion of transect effort in stratum i. Because 
individual whales observed in groups and recorded in a 
single sighting were not independent of each other, the 
standard chi-squared distribution could not be used to 
determine whether the test statistic was valid. Instead, we 
generated a sampling distribution by randomly permuting 
the depth zones in each monthly or seasonal data subset 
for each species 500 000 times and computing χ2 for each 
permutation. For each analysis, the significance of the 
actual χ2 test statistic computed from the observed data was 
assessed in comparison to the distribution of the 500 000 χ2 
values derived from the random permutations. 

Calculation of habitat selection ratios followed Moore 
et al. (2000). Habitat selection ratios (wi) provide indices of 
habitat use comparable between species and seasons (see 
Moore et al., 2000; Manly et al., 2002). These ratios were 
calculated as:

	 wi = oi/πi

where, oi = proportion of whales observed on transect in 
depth zone i; and πi = proportion of effort (km on transect) 
in depth zone i (πi was identified as pEi in Moore et al., 
2000). If wi > 1, the proportion of whales in depth zone i 
is greater than expected if distribution were uniform, 
given the proportion of effort in depth zone i. If wi < 1, the 
proportion of whales in depth zone i is less than expected if 
distribution were uniform, given the proportion of effort in 
depth zone i. The probability that a randomly selected whale 
would be in depth zone i if there were equal survey effort 
across all depth zones could be computed by standardizing 
the selection ratios, assuming that individual whales were 
independently distributed. However, feeding whales tend 
to be aggregated into groups, and cow-calf pairs are found 
in close association with each other, so the assumption of 
independence does not hold. Therefore, we did not compute 
standardized habitat selection ratios. Habitat selection 
implies that whales are actively selecting certain habitats. 
Because track line detection probability is not currently 
known for these surveys, habitat selection ratios presented 
here are more representative of habitat use. 

Depth and Sea Ice Habitat Use, 1982 – 91 vs. 2009 – 16

To compare habitat use by bowhead and beluga whales 
observed in the western Beaufort Sea in 1982 – 91 with 
that observed in 2009 – 16, we used a data subset that was 
selected to ensure that as many variables as possible were 
equivalent between the two periods. Direct comparison 
of bowhead and beluga sighting rates from the periods 
1982 – 91 and 2009 – 16 is not possible because of the 
different survey platforms and data collection protocols, 
which likely affect detection probabilities, as discussed in 
Clarke et al. (2016). However, chi-squared permutation tests 
were used to determine whether the distribution of whales 

was uniform with respect to depth or sea ice concentration 
in each month and season. We also investigated whether 
the bowhead and beluga whale sightings on transect 
(without reference to group size) during each period were 
distributed uniformly across depth zones using the chisq.
fun function in R. For this analysis, the expected number of 
sightings per depth zone was computed as the total number 
of sightings on transect in the study area multiplied by the 
proportion of transect effort in that zone. Habitat selection 
ratios using whales and effort on transect in 1982 – 91 and 
2009 – 16 allow us to determine habitat preferences within 
each time period and to compare the two time periods. Data 
from 1982 – 91 were reanalyzed using number of whales 
rather than number of sightings to better incorporate 
multi-animal groups, including cow-calf pairs and feeding 
groups. Geographic, temporal, and depth zone parameters 
remained the same as described above. Depth zones were 
based on the same digitally derived boundaries described 
above, except that the inner shelf depth zone included 
≤ 50  m depths to align with Moore et al. (2000). Total 
distance per depth zone was calculated using the method 
described above. Sea ice habitat selection used the same sea 
ice categories as Moore et al. (2000): 0% – 10%, open water/
light; 11% – 40%, light/moderate; 41% – 70%, moderate/
heavy; 71% – 100%, heavy. For each sea ice category, we 
calculated total distance (transect kilometers) by summing 
the distances from all transects using ESRI ArcGIS version 
10.4. The 1982 – 91 Beaufort Sea data do not distinguish 
primary observers from other observers; therefore, to 
compare habitat use between that period and 2009 – 16, we 
used data from all observers to determine the number of 
whales sighted in each period. 

RESULTS

Survey Effort, Sighting Distribution, and Sighting Rates, 
2009 – 16

More than 167 000 km (transect and circling-on-transect) 
were flown in the western Beaufort Sea from 2009 to 2016 
(Fig. 1), with variation among years and months (Table 1, 
Fig. 2). Surveys were concentrated on the Beaufort Sea 
shelf and slope because those areas overlapped offshore 
oil and gas exploration and production areas. Effort in the 
northeastern part of the study area was largely limited to 
2016, when surveys were extended into deeper water areas 
to target beluga habitat specifically. Annual survey effort 
was greatest in 2016 (> 34 000 km) (Fig. 2). Monthly effort 
across all years was highest in September (> 64 000 km 
total; mean of 8083 km per year) and lowest in July 
(< 24 000 km; mean of 2909 km per year). Surveys were 
regularly conducted in July and August from 2012 to 2016; 
only 3% of total summer effort occurred in 2009 – 11. 
Half (50%) of total effort was in the inner shelf (0 – 50 m) 
depth zone, while only 7% of total effort was in the basin 
(> 2000 m) depth zone (Table 1, Fig. 1). 
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There were 2383 on-effort sightings of 4567 bowhead 
whales in the western Beaufort Sea from 2009 to 2016 
(Table 1). Bowheads were seen during all survey months, 
with the greatest number of sightings and total whales in 
September (Table 1, Fig. 3B). There were relatively few 
sightings in July, despite more than 23 000 km of effort. 
Sightings in July were distributed from 140˚ W to 149˚ W 
and 150.5˚ W to 156˚ W, with a gap in distribution near 
Harrison Bay (Fig. 3A), and most bowheads were seen 
offshore on the outer shelf or slope. In August, bowhead 
whales were distributed across the entire western Beaufort 
Sea with no gaps in distribution, and seen in all depth 
zones (Fig. 3A). Sightings were also broadly distributed 
throughout the study area in September and October, 
with more sightings on the inner shelf and near Barrow 
Canyon and fewer sightings on the slope or basin, when 
compared to summer (Fig. 3B). No bowhead whales were 
seen between barrier islands and the mainland, probably 
because the water is too shallow (although survey effort 
was also limited in those areas). Monthly sighting rates 
were lowest in July, quadrupled in August, and decreased 
in September and again in October (Table 1). The sighting 
rate was highest in the inner shelf-shallow (≤ 20 m) depth 
zone in both summer and fall (Table 1). The annual sighting 
rate ranged from a low of 0.0054 whales/km in 2011 to a 

high of 0.0476 whales/km in 2016. Fall sighting rates were 
higher than summer rates in all years except 2013 and 2016 
(Fig. 4A); in 2016, the summer sighting rate was more than 
twice as high as the fall sighting rate. As expected, annual 
and seasonal sighting rates using effort and whales on 

TABLE 1. Sightings of bowhead and beluga whales in the western Beaufort Sea study area, 2009 – 16. Survey effort (km) includes 
kilometers flown on transect plus circling-on-transect. S (W) indicates number of sightings and (in parentheses) number of whales 
sighted. Sighting rate (SR), or number of whales per kilometer, is given for each depth zone in each month and season. Bold font indicates 
the maximum sighting rate for each month and season.

		  July			   August			   Summer	
Bowhead whale:	 km	 S (W)	 SR	 km	 S (W)	 SR	 km	 S (W)	 SR

Inner shelf-shallow (≤ 20 m)	 3224	 7 (12)	 0.0037	 7100	 218 (804)	 0.1132	 10 324	 225 (816)	 0.0790
Inner shelf-deep (21 – 50 m)	 7001	 11 (15)	 0.0021	 15 308	 368 (569)	 0.0372	 22 309	 379 (584)	 0.0262
Outer shelf (51 – 200 m)	 5273	 57 (103)	 0.0195	 10 804	 188 (298)	 0.0276	 16 077	 245 (401)	 0.0249
Continental slope (201 – 2000 m)	 5411	 40 (64)	 0.0118	 9466	 27 (45)	 0.0048	 14 877	 67 (109)	 0.0073
Basin (> 2000 m)	 2364	 2 (2)	 0.0008	 3851	 3 (4)	 0.0010	 6215	 5 (6)	 0.0010
Total	 23 273	 117 (196)	 0.0084	 46 530	 804 (1720)	 0.0370	 69 804	 921 (1916)	 0.0274
Beluga whale:
Inner shelf-shallow (≤ 20 m)	 3224	 7 (11)	 0.0034	 7100	 19 (36)	 0.0051	 10 324	 26 (47)	 0.0046
Inner shelf-deep (21 – 50 m)	 7001	 29 (87)	 0.0124	 15 308	 40 (155)	 0.0101	 22 309	 69 (242)	 0.0108
Outer shelf (51 – 200 m)	 5273	 82 (369)	 0.0700	 10 804	 95 (391)	 0.0362	 16 077	 177 (760)	 0.0473
Continental slope (201 – 2000 m)	 5411	 536 (1646)	 0.3042	 9466	 638 (2770)	 0.2926	 14 877	 1174 (4416)	 0.2968
Basin (> 2000 m)	 2364	 92 (202)	 0.0855	 3851	 109 (171)	 0.0444	 6215	 201 (373)	 0.0600
Total	 23 273	 746 (2315)	 0.0995	 46 530	 901 (3523)	 0.0757	 69 804	 1647 (5838)	 0.0836

		  September			   October			   Fall	
Bowhead whale:	 km	 S (W)	 SR	 km	 S (W)	 SR	 km	 S (W)	 SR

Inner shelf-shallow (≤ 20 m)	 11 371	 381 (915)	 0.0805	 6448	 156 (326)	 0.0506	 17 819	 537 (1241)	 0.0696
Inner shelf-deep (21 – 50 m)	 22 337	 525 (806)	 0.0361	 10 545	 106 (184)	 0.0174	 32 882	 631 (990)	 0.0301
Outer shelf (51 – 200 m)	 14 324	 151 (201)	 0.0140	 8321	 109 (171)	 0.0206	 22 644	 260 (372)	 0.0164
Continental slope (201 – 2000 m)	 11 893	 23 (30)	 0.0025	 6054	 11 (18)	 0.0030	 17 947	 34 (48)	 0.0027
Basin (> 2000 m)	 4502	 0 (0)	 0.0000	 1557	 0 (0)	 0.0000	 6058	 0 (0)	 0.0000
Total	 64 427	 1080 (1952)	 0.0303	 32 924	 382 (699)	 0.0212	 97 352	 1462 (2651)	 0.0272
Beluga whale:
Inner shelf-shallow (≤ 20 m)	 11 371	 26 (50)	 0.0044	 6448	 6 (7)	 0.0011	 17 819	 32 (57)	 0.0032
Inner shelf-deep (21 – 50 m)	 22 337	 20 (31)	 0.0014	 10 545	 11 (31)	 0.0029	 32 882	 31 (62)	 0.0019
Outer shelf (51 – 200 m)	 14 324	 84 (259)	 0.0181	 8321	 93 (442)	 0.0531	 22 644	 177 (701)	 0.0310
Continental slope (201 – 2000 m)	 11 893	 353 (771)	 0.0648	 6054	 226 (696)	 0.1150	 17 947	 579 (1467)	 0.0817
Basin (> 2000 m)	 4502	 42 (123)	 0.0273	 1557	 3 (5)	 0.0032	 6058	 45 (128)	 0.0211
Total	 64 427	 525 (1234)	 0.0192	 32 924	 339 (1181)	 0.0359	 97 352	 864 (2415)	 0.0248

FIG. 2. Summary of monthly and annual kilometers (transect plus circling-
on-transect kilometers) flown during aerial surveys of marine mammals 
in the western Beaufort Sea from July to October in 2009 – 16. Error bars 
represent one standard deviation of average kilometers per month.
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FIG. 3. Bowhead whale sightings per month and sighting rate (whales per km) for each depth zone in (A) summer (July and August) and (B) fall (September 
and October), 2009 – 16. Includes transect plus circling-on-transect sightings. Heavy shading represents highest sighting rate and no shading represents lowest 
sighting rate.
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transect only were lower than those incorporating effort 
and whales on circling, but the overall trends remained the 
same (Fig. 4B).

Additional information about bowhead whales’ use of 
the western Beaufort Sea was gleaned from the data on 
behavior and sea ice cover. Bowheads were mainly recorded 
as swimming (1906 whales, 42%) or feeding (1208 whales, 
26%). Bowhead feeding behavior is likely underreported 
in aerial survey data because it is difficult to assess, 
particularly for whales feeding near the bottom or in the 
water column (Lowry, 1993; Lowry et al., 2004). Bowheads 
were recorded as milling when there was no direct evidence 
of feeding activity; in reality, however, milling whales 
(738 whales, 16%) may be foraging as well. Feeding 
was recorded in all months, with the highest proportion 
of feeding to all behaviors occurring in August (36%). 
Interannual variability was strong, with feeding rarely 
observed (138 whales) in 2009 – 10 and in 2012 – 13, and 
not observed at all in 2011 (Fig. 5). Feeding observations 
were temporally and geographically clumped in 2014, 2015, 
and 2016. In 2014, feeding was observed primarily in the 
central Alaskan Beaufort Sea from Camden Bay to north 
of Prudhoe Bay (~145˚ W to 148.5˚ W) from late August 
to early October. In 2015, feeding was observed primarily 
in the western Alaskan Beaufort Sea from just west of 
Harrison Bay to Point Barrow (~151.5˚ W to 157˚ W) from 
late August to early October. In 2016, feeding behavior was 
observed in three areas: Camden Bay in August, Harrison 

Bay from early August through early September, and 
Barrow Canyon in late August. Feeding was occasionally 
observed in areas where water depths exceeded 200 m, but 
most feeding (87%) was observed on the inner shelf where 
water depths were 20 m or less. Bowheads were seen in up 
to 80% broken floe sea ice, although most bowheads (92%) 
were seen in the ice-free conditions that were prevalent in 
late summer and fall in the study area. In most years, the 
sea ice edge was farther north than the extent of survey 
effort, particularly in fall.

For beluga whales, there were 2511 on-effort sightings of 
8253 individuals in the western Beaufort Sea in 2009 – 16 
(Table 1). Beluga whales were seen during all survey 
months (Fig. 6), with the greatest number of sightings 
and total whales in August (Table 1). Belugas were seen 
predominantly on the continental slope and basin in both 
summer and fall (Fig. 6). The lack of belugas in most of 
the northeastern part of the study area is likely due to the 
relative lack of survey effort in that region (see Fig. 1). 
Belugas were occasionally sighted in nearshore, inner shelf 
waters (< 50 m), but those observations accounted for only 
5% of total belugas seen. The sighting rate was highest 
in July, decreased in August and again in September, and 
increased in October (Table 1). In four of the five years 
(2012 – 16) when surveys were regularly conducted during 
summer months, the sighting rate was noticeably higher 
in summer than in fall (Fig. 4C); in 2015, however, the fall 
sighting rate was slightly higher. The difference in seasonal 

FIG. 4. Sighting rates (whales/km) for bowhead (A, B) and beluga (C, D) whales in the western Beaufort Sea in summer and fall of 2009 – 16. Tr = transect; 
Tr + TrC = transect plus circling-on-transect. 
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sighting rate was particularly striking in 2016, when the 
summer sighting rate was 56 times the fall sighting rate; 
only 21 belugas were seen during September and October 
2016 (Clarke et al., 2017). Sighting rates using whales and 
effort on transect differed only slightly (Fig. 4D) from the 
sighting rate analysis that incorporated whales and effort 
on circling primarily because beluga sightings were rarely 
circled. The highest sighting rate was in continental slope 
(201 – 2000 m) depth zone in both summer and fall, while 
the lowest sighting rate was in the inner shelf-shallow in 
summer and the inner shelf-deep in fall (Table 1). 

Most beluga whales were recorded as swimming (6407 
whales, 78%) and were headed west, with the exception of 
belugas seen in the Barrow Canyon area in summer, which 
were headed east. Belugas were seen in up to 99% ice 
cover, although most whales (56%) were seen in the ice-free 
conditions that were present in late summer and throughout 
fall in the study area. Most (98%) of the belugas observed 
near sea ice were seen in July and August, when sea ice was 
still present in offshore areas with deeper water. 

Seasonal Habitat Use, 2009 – 16

Results from permutation tests on summer depth 
distribution were significant for bowhead whales, but 
not for beluga whales (Table 2). In summer, bowheads 
preferred inner shelf-shallow habitat (≤ 20 m; wi = 2.797), 
with minimal preference for continental slope or basin 
(> 201 m depth) habitat, while belugas overwhelmingly 
preferred continental slope (201 – 2000 m; wi = 3.336), 

with minimal use of inner shelf-shallow waters (≤ 20 m; 
wi = 0.056) (Table 2). Comparison of selection ratios of 
bowhead and beluga whales indicated that there was 
essentially no overlap in preferred habitat between the two 
species in summer. Bowheads were 50 times as likely as 
belugas to use inner shelf-shallow habitat, and belugas were 
10 times as likely as bowheads to use continental slope. 
Bowheads showed some preference for inner shelf-deep 
and outer shelf habitat, whereas belugas rarely used those 
depth zones. 

Permutation tests on fall depth distributions were 
not significant for bowheads or belugas when number 
of individuals was used (Table 2) but were significant for 
both species when number of sightings was used. Bowhead 
habitat selection ratios (wi) showed that in fall, bowheads 
were more likely to be seen in inner shelf-shallow habitat 
(≤ 20 m; wi = 2.251) and, to a lesser extent, in inner shelf-
deep habitat (21 – 50 m; wi = 1.252), than in any other depth 
zone (Table 2). Bowheads used inner shelf habitat (≤ 50 m) 
five times as frequently as outer shelf, slope, and basin 
habitat (> 50 m) (Table 2). Beluga habitat preference in fall 
remained overwhelmingly for continental slope habitat 
(201 – 2000 m; wi = 3.071), and belugas were least likely to 
use inner shelf-deep habitat (21 – 50 m; wi = 0.080). In fall, 
as in summer, habitat preferences of bowhead and beluga 
whales barely overlapped. Bowheads used inner shelf-
shallow habitat nearly 17 times as often as belugas in fall, 
while belugas were 26 times as likely as bowheads to use 
continental slope habitat (Table 2). 

FIG. 5. Sightings of feeding bowhead whales (on transect plus circling-on-transect) in the western Beaufort Sea, 2009 – 16. 
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FIG. 6. Beluga whale sightings per month and sighting rate (whales per km) for each depth zone in (A) summer (July and August) and (B) fall (September and 
October), 2009 – 16. Details as in Figure 3.
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Monthly Habitat Use, 2009 – 16

Results from the chi-squared permutation tests on depth 
distribution of individual bowhead whales were significant 
only for August and September, supporting the hypothesis 
of variable distribution with respect to depth; results for 
July and October suggested that the null hypothesis of 
uniform depth distribution could not be rejected (Table 3). 
Bowheads in July preferred outer shelf habitat (51 – 200 m; 
wi = 2.070), with secondary preference for continental slope 
habitat (201 – 2000 m; wi = 1.690; Table 3). In all remaining 
months, bowheads overwhelmingly preferred inner shelf-
shallow habitat (≤ 20 m; August wi = 3.162; September wi = 
2.313; October wi = 2.168), with some preference for inner 
shelf-deep habitat in August and September. 

For beluga whales, none of the monthly χ2 permutation 
tests on depth distribution of number of individual belugas 
were significant (Table 4); however, all analogous tests 
conducted using sightings (groups) as the sample unit were 
significant in all months. Belugas preferred continental 
slope (201 – 2000 m depth) habitat in every month, with 
least preference for inner shelf in all months. 

Comparison of monthly habitat selection ratios of 
bowhead and beluga whales indicated that the two species 
had almost no overlap in preferred habitat in any month. 
July was the only month during which some habitat 

preference overlapped, when bowheads used outer shelf and 
continental slope habitat (51 – 2000 m depth) and belugas 
used continental slope (201 – 2000 m depth). 

Habitat Use Comparison, 1982 – 91 to 2009 – 16

Primary habitat preference results in the reanalyzed 
1982 – 91 data remained similar in both seasons to those 
reported in Moore et al. (2000) for bowhead whales, but 
not for beluga whales (Table 5). The preferred depth habitat 
for belugas remained the same in fall, and preferred ice 
habitat in fall and depth habitat in summer varied only 
slightly, between the reanalyzed 1982 – 91 data and results 
reported in Moore et al. (2000). However, beluga ice habitat 
preference in summer differed considerably between 
Moore et al. (2000) and the reanalyzed 1982 – 91 dataset, 
with the former analysis indicating primary preference 
for open water/light ice (≤ 10%) cover and the reanalysis 
indicating a primary preference for moderately heavy ice 
(41% – 70%) cover. The discrepancies noted are likely due 
to the use of whales instead of sightings as the sample unit 
in the reanalysis.

Permutation test results suggested that the depth 
distribution of bowhead whales was not uniform during 
September and fall in 1982 – 91 or during August, 
September, and summer in 2009 – 16. However, all of the 

TABLE 2. Seasonal summary by depth zone and depth selection ratios (wi) of bowhead and beluga whales sighted on transect in the 
western Beaufort Sea, 2009 – 16. Tr km refers to transect kilometers; observed refers to # of whales observed; expected refers to # of 
whales expected if distribution were uniform throughout the study area; and χ2 and p indicate results from permutation tests, which used 
individual whales as the sample unit. πi represents the proportion of survey effort per depth zone, oi is the proportion of whales observed 
in each depth zone, and wi = oi/πi . 

			   Summer					     Fall
	 Effort	 Observed	 Expected 	 Effort 	 Observed	 Expected	
Depth zone (m)	 (Tr km)	 Bowhead	 Beluga	 Bowhead	 Beluga	 (Tr km)	 Bowhead	 Beluga	 Bowhead	 Beluga

Inner shelf-shallow (≤ 20 m)	 8883	 426	 43	 152	 797	 15 169	 509	 51	 226	 396
Inner shelf-deep (21 – 50 m)	 19 431	 360	 227	 332	 1742	 28 951	 540	 61	 431	 756
Outer shelf (51 – 200 m)	 13 865	 196	 733	 237	 1243	 21 021	 242	 668	 313	 549
Continental slope (201 – 2000 m)	 14 050	 77	 4212	 240	 1260	 17 587	 31	 1410	 262	 459
Basin (> 2000 m)	 6073	 6	 372	 104	 545	 6052	 0	 128	 90	 158
Total	 62 304	 1065	 5587	 1065	 5587	 88 782	 1322	 2318	 1322	 2318
				    χ2 = 400.47	 9279.63				    χ2 = 575.64	 2951.82
				    p = 0.0064	 0.4402				    p = 0.0603	 0.9682

		  Bowhead whales	 Beluga whales
Depth zone (m)	 πi	 oi	 wi	 oi	 wi

Summer:	
Inner shelf-shallow (≤ 20 m)	 0.143	 0.400	 2.797	 0.008	 0.056
Inner shelf-deep (21 – 50 m)	 0.312	 0.338	 1.083	 0.041	 0.417
Outer shelf (51 – 200 m)	 0.223	 0.184	 0.825	 0.131	 0.587
Continental slope (201 – 2000 m)	 0.226	 0.072	 0.319	 0.754	 3.336
Basin (> 2000 m)	 0.097	 0.006	 0.062	 0.067	 0.691
Total	 1.000	 1.000	 5.086	 1.000	 5.087

Fall:
Inner shelf-shallow (≤ 20 m)	 0.171	 0.385	 2.251	 0.022	 0.129
Inner shelf-deep (21 – 50 m)	 0.326	 0.408	 1.252	 0.027	 0.080
Outer shelf (51 – 200 m)	 0.237	 0.183	 0.772	 0.288	 1.215
Continental slope (201 – 2000 m)	 0.198	 0.023	 0.116	 0.608	 3.071
Basin (> 2000 m)	 0.068	 0.000	 0.000	 0.055	 0.809
Total	 1.000	 1.000	 4.391	 1.000	 5.303
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2009 – 162

See Table 6

Strongest association with inner shelf 
habitat; little selection for any other habitat.

Strongest association with inner shelf 
habitat; little selection for any other habitat.

Very strong association with continental 
slope; least selection for inner shelf.

Strongest association with continental 
slope habitat and outer shelf habitats; least 
selection for inner shelf.

See Table 7

Strongest association with open water/light 
ice (0% – 10%); least selection for heavy ice 
(> 70%).

Strongest association with open water/
light ice (0% – 10%); least selection for 
moderately heavy ice (41% – 70%), and no 
selection for heavy ice (> 70%).

Strongly associated with moderately light 
ice (11% – 40%); least selection for heavy 
ice (> 70%).

Strongest association with open water/
light ice (0% – 10%); least association with 
moderately light ice (11% – 40%).

TABLE 5. Summary of results for seasonal depth zone and sea ice cover habitat preferences of bowhead and beluga whales from Moore 
et al. (2000), the current reanalysis for 1982 – 91, and the current analysis for 2009 – 16.

1982 – 911	

Strongest association with continental slope 
and outer shelf habitats; least selection for 
inner shelf and basin habitats.

Strongest association with inner shelf and 
outer shelf habitats; little selection for 
continental slope or basin.	

Strongest association with continental slope 
and basin habitat; least selection for inner 
shelf.	

Very strong association with continental 
slope habitat with some selection of basin 
and outer shelf; least selection for inner 
shelf.	

Uniform distribution.	

Strongest association with open water/light 
ice (0% – 10%) habitat.
	

Strongest association with open water/
light ice (0% – 10%), heavy ice (> 70%), and 
moderately heavy ice (41% – 70%) habitat; 
least selection for moderately light ice 
(11% – 40%).	

Strongest association with moderately 
heavy ice (41% – 70%) and heavy ice 
(>70%); least selection for open water/light 
ice (% – 10%).

1982 – 91 reanalysis2

See Table 6

Very strong association with continental 
slope habitat; little selection of any other 
habitat.	

Strongest association with inner shelf 
habitat, with some selection for outer shelf; 
little selection for continental slope or 
basin.	

Strongest association with basin and 
continental slope habitats; least selection 
for inner shelf.	

Very strong association with continental 
slope habitat with some selection of outer 
shelf and basin; least selection for inner 
shelf.	

See Table 7

Strongest association with moderately light 
ice (11% – 40%) habitat	

Strongest association with open water/light 
ice (0% – 10%) habitat.	

Strongest association with moderately 
heavy ice (41% – 70%) and heavy ice 
(> 70%) habitat; least selection for 
moderately light ice (11% – 40%).	

Strongest association with heavy ice 
(> 70%) and moderately heavy ice 
(41% – 70%); least selection for open water/
light ice (0% – 10%).

Depth habitat:

Bowhead whales:

Summer	

Fall	

Beluga whales:

Summer	

Fall	

Ice cover habitat:

Bowhead whales:

Summer	

Fall	

Beluga whales:

Summer	

Fall	

	 1	Data summarized from Moore et al. (2000).
	 2	Data summarized in this study.

standard chi-squared tests on bowhead whale sightings 
suggested that distribution by depth was not uniform in 
any month or season of either period. In summer 1982 – 91, 
primary bowhead depth preference was for continental 
slope habitat (201 – 2000 m; wi = 2.678), while in summer 
2009 – 16, bowheads preferred inner shelf habitat (wi = 
1.658; Table 6). In fall, bowheads used similar habitat 
during both periods: inner shelf habitat (≤ 50 m) was used 
most often (1982 – 91, wi = 1.474; 2009 – 16, wi = 1.661) 
and basin habitat was used the least (1982 – 91, wi = 0.104; 
2009 – 16, no use of basin) (Table 6). 

For beluga whales, monthly and seasonal permutation 
test results of depth distribution were not significant in 
either period; however, all of the standard chi-squared 
tests using sightings as the sample unit were significant. In 
summer, beluga habitat preference was for basin (> 2000 m 
depth; wi = 1.660) in the reanalyzed 1982 – 91 dataset and 
for continental slope (201 – 2000 m; wi = 3.300) in 2009 – 16 
(Table 6). In fall, belugas preferred continental slope habitat 
(201 – 2000 m) during both periods (1982 – 91, wi = 2.942; 
2009 – 16, wi = 3.091) (Table 6). Belugas were least likely to 
use inner shelf habitat in both summer and fall. 
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TABLE 6. Comparison of seasonal depth zone selection ratios (wi) for bowhead and beluga whales in 1982 – 91 and 2009 – 16. πi represents 
the proportion of survey effort per depth zone, oi is the proportion of whales observed in each depth zone, and wi = oi/πi. Tr km refers 
to transect kilometers; # observed refers to number of whales observed. Note that total Tr km in Tables 6 and 7 differ because different 
methods were used to summarize effort.

1982 – 91:
Summer	 Effort			   Bowhead whales			   Belugas
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 15 393	 0.306	 10	 0.081	 0.264	 33	 0.078	 0.256
Outer shelf (51 – 200 m)	 9668	 0.192	 19	 0.153	 0.798	 54	 0.128	 0.667
Continental slope (201 – 2000 m)	 12 283	 0.244	 81	 0.653	 2.678	 154	 0.365	 1.496
Basin (> 2000 m)	 13 014	 0.258	 14	 0.113	 0.437	 181	 0.429	 1.660
Total	 50 360	 1.000	 124	 1.000	 4.177	 422	 1.000	 4.078

Fall	 Effort			   Bowhead whales			   Belugas
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 75 713	 0.487	 498	 0.719	 1.474	 63	 0.020	 0.041
Outer shelf (51 – 200 m)	 35 139	 0.226	 153	 0.221	 0.976	 1004	 0.322	 1.421
Continental Slope (201 – 2000 m)	 27 170	 0.175	 34	 0.049	 0.280	 1607	 0.515	 2.942
Basin (> 2000 m)	 17 297	 0.111	 8	 0.012	 0.104	 448	 0.143	 1.289
Total	 155 320	 1.000	 693	 1.000	 2.834	 3122	 1.000	 5.694
	
2009 – 16:
Summer	 Effort			   Bowhead whales			   Belugas
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 28 314	 0.454	 829	 0.754	 1.658	 282	 0.050	 0.110
Outer shelf (51 – 200 m)	 13 865	 0.223	 180	 0.164	 0.735	 759	 0.134	 0.603
Continental slope (201 – 2000 m)	 14 050	 0.226	 86	 0.078	 0.347	 4211	 0.744	 3.300
Basin (> 2000 m)	 6073	 0.097	 5	 0.005	 0.047	 407	 0.072	 0.738
Total	 62 304	 1.000	 1100	 1.000	 2.740	 5659	 1.000	 4.750

Fall	 Effort			   Bowhead whales			   Belugas
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 44 121	 0.497	 1143	 0.825	 1.661	 112	 0.048	 0.097
Outer shelf (51 – 200 m)	 21 021	 0.237	 209	 0.151	 0.637	 663	 0.285	 1.205
Continental slope (201 – 2000 m)	 17 587	 0.198	 33	 0.024	 0.120	 1423	 0.612	 3.091
Basin (> 2000 m)	 6052	 0.068	 0	 0.000	 0.000	 126	 0.054	 0.795
Total	 88 782	 1.000	 1385	 1.000	 2.418	 2324	 1.000	 5.188 

As for distribution with respect to sea ice concentration, 
permutation test results suggested that for both species, 
these distributions were not uniform during any season 
in either period. Standard chi-squared test results on the 
number of sightings in each sea ice concentration also 
indicated non-uniform seasonal distributions for both 
species and periods, except for bowhead whales during 
summer 1982 – 91 (p = 0.17). In fall 1982 – 91, bowheads 
were primarily associated with open water/light ice (≤ 10%; 
wi = 1.724) (Table 7). In 2009 – 16, bowhead whales were 
also primarily associated with open water/light ice (≤ 10%) 
habitat in both summer (wi = 1.462) and fall (wi = 1.080) 
(Table 7). For beluga whales, ice cover association differed 
between periods in both summer and fall. In summer, 
belugas were primarily associated with moderately heavy 
ice (41% – 70%; wi = 1.243) in 1982 – 91, compared to 
moderately light ice (11% – 40%; wi = 1.644) in 2009 – 16 
(Table 7). In fall, the difference between 1982 – 91 and 
2009 – 16 was more dramatic: belugas were associated with 
heavy ice (> 70%) in fall 1982 – 91 (wi = 1.748), but with 

open water/light ice (≤ 10%) in 2009 – 16 (wi = 1.079). The 
relationship with sea ice is likely an association only and 
not active selection by belugas. Belugas were found along 
the continental slope during both time periods, and the 
slope was characterized by heavier ice in 1982 – 91 and by 
open water/light ice in 2009 – 16.

DISCUSSION

Data collected on whales and other marine mammals in 
the western Beaufort Sea as part of the ASAMM project 
and its precursors span more than 30 years. Changes to 
the Arctic climate over the past several decades, including 
the loss of seasonal sea ice, increased ocean and air 
temperatures, and greater oceanic freshwater content, 
are well documented (e.g., Johannessen and Miles, 2011; 
Woodgate et al., 2012; Cohen et al., 2014; Wood et al., 
2015). In this paper we analyzed bowhead and beluga whale 
sighting data obtained during aerial surveys conducted 
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TABLE 7. Comparison of seasonal sea ice cover selection ratios (wi) for bowhead and beluga whales in 1982 – 91 and 2009 – 16. Details 
as in Table 6.

1982 – 91:
Summer	 Effort			   Bowhead whales			   Beluga whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Ice cover category (%)
≤ 10%	 11 751	 0.235	 30	 0.242	 1.030	 83	 0.197	 0.837
11% – 40%	 5922	 0.118	 20	 0.161	 1.362	 28	 0.066	 0.560
41% – 70%	 7057	 0.141	 17	 0.137	 0.972	 74	 0.175	 1.243
71% – 100%	 25 290	 0.506	 57	 0.460	 0.909	 237	 0.562	 1.111
Total	 50 020	 1.000	 124	 1.000	 4.273	 422	 1.000	 3.751

Fall	 Effort			   Bowhead whales			   Beluga whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Ice cover category (%)
≤ 10%	 73 046	 0.474	 566	 0.817	 1.724	 599	 0.192	 0.405
11% – 40%	 14 493	 0.094	 18	 0.026	 0.276	 226	 0.072	 0.770
41% – 70%	 19 606	 0.127	 36	 0.052	 0.409	 631	 0.202	 1.590
71% – 100%	 47 082	 0.305	 73	 0.105	 0.345	 1666	 0.534	 1.748
Total	 154 227	 1.000	 693	 1.000	 2.755	 3122	 1.000	 4.513

2009 – 16:
Summer	 Effort			   Bowhead whales			   Beluga whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Ice cover category (%)
≤ 10%	 41 841	 0.646	 1038	 0.944	 1.462	 3214	 0.568	 0.880
11% – 40%	 14 466	 0.223	 36	 0.033	 0.147	 2077	 0.367	 1.644
41% – 70%	 5180	 0.080	 23	 0.021	 0.262	 236	 0.042	 0.522
71% – 100%	 3323	 0.051	 3	 0.003	 0.053	 132	 0.023	 0.455
Total	 64 810	 1.000	 1100	 1.000	 1.923	 5659	 1.000	 3.501

Fall	 Effort			   Bowhead whales			   Beluga whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 # observed	 oi	 wi

Ice cover category (%)
≤ 10%	 81 843	 0.912	 1364	 0.985	 1.080	 2286	 0.984	 1.079
11% – 40%	 4078	 0.045	 20	 0.014	 0.318	 9	 0.004	 0.085
41% – 70%	 1304	 0.015	 1	 0.001	 0.050	 15	 0.006	 0.444
71% – 100%	 2515	 0.028	 0	 0.000	 0.000	 14	 0.006	 0.215
Total	 89 740	 1.000	 1385	 1.000	 1.447	 2324	 1.000	 1.823

in the western Beaufort Sea in 2009 – 16 and replicated 
the analyses of habitat preference in 1982 – 91 originally 
conducted by Moore et al. (2000) to compare habitat 
preference during this period of great change in the Arctic 
environment (Jeffries et al., 2013). These results also 
provide complementary analyses to those for bowhead and 
gray whales in the eastern Chukchi Sea (Clarke et al., 2016). 

Aerial survey protocols used in 2009 – 16 replicated 
those used during 1982 – 91 as closely as possible, and 
consistent methods were used in the habitat use analyses 
conducted for both periods. However, as noted in Clarke 
et al. (2016), several caveats pertaining to ASAMM data 
collection in 1982 – 91 and 2009 – 16 have the potential to 
affect interpretation of results. These caveats, in brief, 
include improved accuracy and precision of field data, 
more precise and accurate delineation of depth zones in 
2009 – 16, and differences in the temporal and spatial 
extent of data analyzed, the amount of sea ice cover, and 
the aerial platforms used in 1982 – 91 and in 2009 – 16. 
Collectively, the differences in data and sampling protocols 
and platforms between 1982 – 91 and 2009 – 16 compromise 
direct comparison of sighting rates and underscore the 

importance of using habitat selection ratios from within 
each survey period to provide comparisons across time.

Shifting Phenology of Bowhead Whales 

Changes in distribution, relative abundance, and habitat 
preference suggest that bowhead whales now occur earlier 
and in greater numbers in the western Beaufort Sea than 
they did in the 1980s. More bowheads were seen in summer 
and fall 2009 – 16 (1100 and 1385, respectively) than in 
summer and fall 1982 – 91 (124 and 693, respectively); 
the higher totals in fall 2009 – 16 occurred despite 58% 
less survey effort in those years (Tables 6 and 7). The 
proliferation of bowhead whales observed in 2009 – 16 
may be due to several factors, including better detection 
probabilities from a survey aircraft traveling at a slower 
speed and outfitted with bubble windows; a much larger 
Bering-Chukchi-Beaufort bowhead population: 16 892 
(CV = 0.244; Givens et al., 2013) in 2011 compared to 
6928 (CV = 0.120; Zeh and Punt, 2005) in 1988; changes 
in behavior which may have affected detection rate; or a 
combination of these and other factors. 
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TABLE 8. Comparison of monthly depth zone selection ratios (wi) for bowhead whales in 1982 – 91 and 2009 – 16. Details as in Table 6.

	 1982 – 91					     2009 – 16
July	 Effort			   Bowhead whales		  Effort			   Bowhead whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 (Tr km)	 πi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 505	 0.155	 0	 NA	 NA	 9950	 0.455	 22	 0.157	 0.346
Outer shelf (51 – 200 m)	 847	 0.259	 0	 NA	 NA	 4681	 0.214	 56	 0.400	 1.870
Continental slope (201 – 2000 m)	 913	 0.279	 0	 NA	 NA	 4941	 0.226	 60	 0.429	 1.898
Basin (> 2000 m)	 1004	 0.307	 0	 NA	 NA	 2309	 0.106	 2	 0.014	 0.135
Total	 3269	 1.000	 0	 NA	 NA	 21 881	 1.000	 140	 1.000	 4.249

August	 Effort			   Bowhead whales		  Effort			   Bowhead Whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 (Tr km)	 πi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 14 888	 0.316	 10	 0.081	 0.255	 18 364	 0.454	 807	 0.841	 1.850
Outer shelf (51 – 200 m)	 8822	 0.187	 19	 0.153	 0.818	 9184	 0.227	 124	 0.129	 0.569
Continental slope (201 – 2000 m)	11 370	 0.241	 81	 0.653	 2.705	 9110	 0.225	 26	 0.027	 0.120
Basin (> 2000 m)	 12 011	 0.255	 14	 0.113	 0.443	 3764	 0.093	 3	 0.003	 0.034
Total	 47 091	 1.000	 124	 1.000	 4.221	 40 422	 1.000	 960	 1.000	 2.573

September	 Effort			   Bowhead whales		  Effort			   Bowhead whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 (Tr km)	 πi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 40 521	 0.447	 342	 0.758	 1.696	 28 578	 0.492	 775	 0.863	 1.753
Outer shelf (51 – 200 m)	 19 142	 0.211	 78	 0.173	 0.819	 13 381	 0.231	 100	 0.111	 0.483
Continental slope (201 – 2000 m)	17 139	 0.189	 23	 0.051	 0.270	 11 594	 0.200	 23	 0.026	 0.128
Basin (> 2000 m)	 13 833	 0.153	 8	 0.018	 0.116	 4496	 0.077	 0	 0.000	 0.000
Total	 90 636	 1.000	 451	 1.000	 2.901	 58 049	 1.000	 898	 1.000	 2.364

October	 Effort			   Bowhead whales		  Effort			   Bowhead whales
	 (Tr km)	 πi	 # observed	 oi	 wi	 (Tr km)	 πi	 # observed	 oi	 wi

Depth zone
Inner shelf (≤ 50 m)	 35 192	 0.544	 156	 0.645	 1.185	 15 542	 0.506	 368	 0.756	 1.494
Outer shelf (51 – 200 m)	 15 996	 0.247	 75	 0.310	 1.253	 7640	 0.249	 109	 0.224	 0.900
Continental slope (201 – 2000 m)	10 031	 0.155	 11	 0.045	 0.293	 5993	 0.195	 10	 0.021	 0.105
Basin (> 2000 m)	 3464	 0.054	 0	 0.000	 0.000	 1557	 0.051	 0	 0.000	 0.000
Total	 64 684	 1.000	 242	 1.000	 2.731	 30 732	 1.000	 487	 1.000	 2.500

Bowhead whales occurred earlier in the western 
Beaufort Sea in the recent surveys than they did 30 years 
ago. Bowhead distribution in summer 2009 – 16 was also 
much broader than that observed in 1982 – 91, particularly 
when assessed by month instead of by season. Bowheads 
were not seen in the western Beaufort in July 1982 – 91 
(although this may reflect limited survey effort), while 
bowhead distribution in July 2009 – 16 closely resembled 
the distribution in August 1982 – 91 (Fig. 3A; Moore et al., 
2000: Fig. 5): bowheads were seen farther from shore and 
primarily in the eastern Alaskan Beaufort Sea (140˚ W to 
148˚ W). Bowhead whale distribution in August 2009 – 16 
(Fig. 3A) was similar to the distribution in fall 1982 – 91 
(Moore et al., 2000: Fig. 5) and fall 2009 – 16 (Fig. 3B), 
when bowheads were observed across the entire western 
Beaufort Sea on the inner shelf. 

Finally, depth zone habitat preference per month in 
2009 – 16 indicated a preference for deeper water (outer 
shelf and continental slope) in July and shallower water 
(inner shelf) from August through October (Table 8). This 
shift in depth preference occurred later in 1982 – 91, from 
deeper habitat in August to shallower habitat in September-
October (Moore et al., 2000). 

These results suggest that, in most years, some bowheads 
may now travel to or remain in the western Beaufort Sea 
inner shelf earlier in summer than in the 1980s. Bowhead 
occurrence on the inner shelf of the western Beaufort Sea 
in August (in addition to September and October) may be 
related to increased opportunities for feeding that were 
not present 30 years ago because there were significantly 
fewer open water days, or it may reflect the expansion of 
a larger population to previously marginal areas. Moore 
and Stabeno (2015) suggested that bowheads may benefit 
from biophysical changes that have occurred in the Pacific 
Arctic, including ice-free summers, warmer currents, and 
increased upwelling and primary production. The most 
dramatic reduction in sea ice cover in the Western Arctic 
during the open water season occurred in the western 
Beaufort Sea: the number of open water days has been 
increasing by 20 days per decade since 1979 (Druckenmiller 
et al., 2017). Bowhead whales may also be moving into the 
inner shelf of the western Beaufort Sea earlier than they 
were 30 years ago to avoid increased prey competition 
elsewhere on their summer feeding grounds. The stock 
is currently estimated to be at least 2.5 times as large as 
it was in the late 1980s (Givens et al., 2013), and in some 
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years the eastern Beaufort Sea ecosystem may not produce 
enough prey for this larger bowhead population. Harwood 
et al. (2010), on the basis of aerial surveys conducted in the 
eastern Beaufort Sea in late August 2007 – 09, indicated 
that bowheads may be aggregating there earlier than they 
were in the 1980s, perhaps by two weeks. While bowheads 
in general may not use the same eastern Beaufort Sea 
aggregation areas each year (Harwood et al., 2010), perhaps 
because of interannual differences in oceanographic 
conditions that concentrate bowhead whale prey (Walkusz 
et al., 2010, 2012), some individuals do exhibit site fidelity 
in successive years (Harwood et al., 2017). Unpredictable 
or sub-optimal prey sources in both nearshore and offshore 
areas of the eastern Beaufort Sea and Amundsen Gulf in 
some years could compel a larger bowhead population to 
look elsewhere (e.g., the western Beaufort Sea) for denser 
prey aggregations.

Availability of prey may also affect the distribution by 
age class of bowhead whales in the eastern Beaufort Sea. 
Satellite telemetry results specific to the eastern Beaufort 
Sea suggest that immature bowheads are more likely 
than mature whales to use the aggregation areas on the 
eastern Beaufort Sea shelf (Harwood et al., 2017). Larger, 
older bowheads are more likely to be found farther east in 
Amundsen Gulf and in deeper water areas farther offshore 
in the eastern (Koski et al., 1988) and central Beaufort 
Sea (Koski and Miller, 2009), perhaps because they are 
physiologically better adapted to feeding in deeper waters 
(Koski and Miller, 2002). It is also possible that larger 
bowheads, because of the combination of energy stores 
in the lipids of their thick blubber and low metabolic rates 
(George, 2009), do not need to feed every year and can 
remain in less productive areas. Data analyzed in this 
paper do not incorporate the influence of bowhead whale 
size and age on distribution or habitat preference. With few 
exceptions (e.g., a calf closely associated with a larger whale 
assumed to be its mother, or whales with completely white 
flukes that are likely very mature adults), bowhead whales 
are generally not specifically identified to size or age in 
the ASAMM database. Determining size and age without 
photogrammetry is subjective. Photogrammetry has never 
been an objective of ASAMM surveys and therefore was 
never integrated into survey protocols. Variable seasonal 
use of the western Beaufort Sea by different age and size 
classes of bowhead whales has been well documented 
(Koski and Miller, 2009). It is possible that some of the 
changes documented over 35 years during this study were 
related to changes in how various age and sex classes 
use the western Beaufort Sea within and between years. 
Investigating this idea further would require dedicated 
photogrammetric aerial surveys that use calibrated 
photographic techniques similar to the surveys conducted 
on bowhead whales in the 1980s and 1990s (Koski and 
Miller, 2009) or the use of unmanned aircraft systems 
similar to those used on killer whales near Vancouver 
Island, British Columbia (Durban et al., 2015). 

Feeding was noted nearly every year ASAMM surveys 
were conducted, but with considerable interannual 
variability. Two of the years with high summer sighting 
rates (2014 and 2016; Fig. 4A) were years in which large 
groups of bowhead whales were feeding in the western 
Beaufort Sea in August. Results from ASAMM and satellite 
telemetry studies have shown that bowhead whale feeding 
opportunities in the western Beaufort Sea in summer and 
fall are ephemeral (Citta et al., 2015; Clarke et al., 2015). 
Results from telemetry studies (2006 – 12) denoted no core-
use areas between the Tuktoyaktuk Shelf in the Canadian 
Beaufort Sea and the Point Barrow area in the western 
Alaskan Beaufort Sea (Citta et al., 2015), although aerial 
survey data from 2007 – 12 identified bowhead whale 
hotspots that may be related to feeding aggregations 
(Kuletz et al., 2015). Their energetic requirements dictate 
that bowheads forage in areas of densely aggregated 
zooplankton, including copepods, euphausiids, mysids, 
and amphipods (Lowry, 1993; Lowry et al., 2004). 
Environmental factors such as earlier sea ice retreat and 
warmer sea temperatures (Frey et al., 2015) can result in 
increased primary and secondary productivity (Moore and 
Laidre, 2006; Arrigo et al., 2008; Arrigo and van Dijken, 
2015; Grebmeier et al., 2015), which improve the potential 
for feeding hotspots. Increased advection (Pickart, 2004) 
and increased freshwater river drainage and upwelling-
favorable winds can create fronts that aggregate bowhead 
whale prey (Ashjian et al., 2010; Moore et al., 2010; 
Okkonen et al., 2011, 2017; Carmack et al., 2016). The extent 
and frequency with which these factors occur in the eastern 
and western Beaufort Sea during any given open water 
season differ annually. If the oceanographic mechanisms 
needed for bowhead prey aggregation do not occur, feeding 
opportunities may not transpire or may be so limited as to 
go undetected during aerial surveys. Interannual variability 
of feeding opportunities may also lead to less predictability 
in bowhead summer and fall movements because of the 
fluctuating quality and quantity of feeding areas throughout 
the Beaufort Sea (Druckenmiller et al., 2017).

The co-occurrence of several foraging-positive 
environmental factors likely led to the relatively high 
numbers of bowhead whales seen feeding from Camden 
Bay to Point Barrow in August 2016. National Center for 
Environmental Protection Reanalysis wind data indicated 
a lack of upwelling winds near Cape Bathurst, Canada, 
from mid-July through early August (NOAA Earth Science 
Research Laboratory, 2016), which may have dampened 
bowhead prey production there and triggered an earlier-
than-usual exodus of bowheads from the eastern Beaufort 
Sea. A similar lack of upwelling near Cape Bathurst that 
occurred in late July and most of August 2013 coincided 
with higher-than-normal bowhead sighting rates in the 
western Beaufort Sea (Clarke et al., 2017). The largest 
aggregation of bowheads ever observed during a single 
ASAMM survey was composed of 498 whales seen on the 
inner shelf of Harrison Bay on 26 August 2016. Although 
that bay had not previously been identified as a bowhead 
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feeding area (ASAMM data; Citta et al., 2015; Kuletz et al., 
2015), 87% of the bowheads observed on 26 August were 
feeding. A frontal system that formed in Harrison Bay in 
late August 2016, likely as a result of record high freshwater 
discharge from the Colville River (USGS National Water 
Information System, 2016), in combination with upwelling-
favorable winds (NOAA National Data Buoy Center, 
2016; Weather Underground, 2016), probably aggregated 
bowhead prey. Similar conditions were documented in the 
central Alaskan Beaufort Sea in September 2014 (Okkonen 
et al., 2017), when large groups of feeding bowhead whales 
were observed near shore between 144˚ W and 150˚ W. 

Beluga Whales  –  Predictable Occurrence

Beluga whale distribution and relative density illustrated 
the importance of continental slope habitat in the western 
Beaufort Sea, particularly in summer. In 2009 – 16, sighting 
rates for all years pooled together were more than three 
times as high in summer as in fall (Table 1). Sighting rates 
were lower and distribution sparse in fall 2009 – 16 except 
in the area near Barrow Canyon. The importance of Barrow 
Canyon habitat for belugas is well documented via data 
from passive acoustic monitoring, satellite telemetry, and 
aerial surveys (Richard et al., 2001; Suydam et al., 2001; 
Suydam, 2009; Stafford et al., 2013, 2017; Hauser et al., 
2015, 2016; Kuletz et al., 2015). 

ASAMM surveys do not completely encompass areas 
that have been identified as core concentration areas 
in the western Beaufort Sea for both the EBS and ECS 
beluga stocks (Hauser et al., 2014, 2016). Lowry et al. 
(2017) estimated that the average proportion of days that 
tagged ECS belugas spent in the western Beaufort study 
area in summer (19 July to 20 August) was 0.35 (CV = 
0.83) for males and 0.64 (CV = 0.49) for females. In fall, 
locations of tagged belugas from both stocks within the 
ASAMM western Beaufort study area were between 0% 
and approximately 25% (D. Hauser, pers. comm. 2017). 
This pattern would indicate that the majority of belugas 
from both stocks are not present in the ASAMM study 
area in either summer or fall. Conducting aerial surveys 
throughout all core areas is not logistically or economically 
feasible. Results from satellite telemetry (Richard et al., 
2001; Suydam et al., 2001) and passive acoustic monitoring 
(Garland et al., 2015; Stafford et al., 2016) provide insights 
into beluga occurrence and migration timing in areas 
beyond the ASAMM study area. Collaborative syntheses 
using data from several complementary sources (e.g., 
Stafford et al., 2013, 2017; Hauser et al., 2016) continue 
to be essential to improving our understanding of Pacific 
Arctic belugas.

The proportion of beluga whales in the western Beaufort 
Sea study area in any given year is unknown. Annual 
beluga sighting rates varied from a low of 0.0055 whales/
km in 2010 to a high of 0.0652 whales/km in 2014, a more 
than tenfold difference. Annual variability in beluga 
relative density in the western Beaufort Sea is likely related 

to several factors that are largely unknown in any given 
year. These factors may include the proportion of the ECS 
beluga stock that migrates into the eastern Beaufort Sea 
in spring and early summer, the proportions of EBS and 
ECS stocks that use the western Beaufort study area, the 
timing of the onset of the westbound migration, foraging 
opportunities, presence of potential predators, and overall 
population sizes. Differentiating between beluga stocks is 
not possible during aerial surveys, but analysis of satellite 
telemetry data suggest that belugas observed in the western 
Beaufort Sea in July and August are likely from the ECS 
stock (Hauser et al., 2014). The easterly swim direction 
of belugas observed by ASAMM in the Barrow Canyon 
area in summer suggests that they are likely ECS belugas 
migrating into the western Beaufort Sea. The EBS stock 
remains in the eastern Beaufort Sea through August, 
migrates across the western Beaufort Sea in September 
and into the Chukchi Sea in October. Hauser et al. (2016) 
analyzed beluga satellite telemetry data divided into an 
early period (1993 – 2002) and a late period (2004 – 12) for 
both the ECS and EBS stocks, and found that the two stocks 
responded differently to changes in the ecosystem (i.e., 
sea ice loss in the late period). The ECS stock remained in 
the Pacific Arctic region later in fall during the late period 
compared to belugas tagged during the early period, and 
migration out of the western Beaufort Sea was positively 
correlated with sea ice freeze-up in fall. Conversely, 
there was no significant change to migration timing and 
no correlation with ice freeze-up for EBS belugas in the 
Beaufort Sea region. From the most recent population 
estimates for the two stocks (2012 ECS estimate of 20 752 
belugas, Lowry et al., 2017; 1999 EBS estimate of 39 258 
belugas, Hill and DeMaster, 1999), we might expect 
sighting rates to be highest in September in the western 
Beaufort Sea because the EBS stock is larger, but we found 
the opposite: September had the lowest sighting rate of all 
months. Size-at-age and blubber thickness in the EBS stock 
each showed slight decreases through 2008 (Harwood et 
al., 2014), and it is possible that the EBS population is no 
longer as large as the 1999 estimate indicated. 

Habitat Partitioning and Preference

Habitat partitioning by depth between bowhead and 
beluga whales was documented in Moore et al. (2000) 
for data collected in 1982 – 91 and remained evident 
in 2009 – 16. While some overlap occurred in sighting 
distribution, habitat selection ratios indicated that species 
co-occurrence was minimal in all months except July, 
when both species showed preference for deeper waters 
(51 – 2000 m for bowheads, 201 – 2000 m for belugas). Data 
collected via satellite-tagged whales identified six core-use 
areas for bowheads (Citta et al., 2015) and numerous core 
areas for ECS and EBS belugas (Hauser et al., 2014), but 
the only temporal and geographic overlap between the two 
species occurred in the Barrow Canyon area. 
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Change in bowhead habitat preference from 1982 – 91 
to 2009 – 16 was limited to depth preference in summer 
(discussed above), while change in beluga habitat 
preference was limited to sea ice cover in fall. Sea ice 
cover preference changed from heavy ice cover in 1982 – 91 
to open water/light ice cover in 2009 – 16, which was not 
surprising in view of the relative lack of sea ice cover 
during 2009 – 16 (Table 7). Beluga depth preference was 
consistently for continental slope or basin zones during 
both time periods, indicating that the static habitat (depth) 
was more persistent than the variable habitat (ice). Put 
another way, the relationship of belugas to sea ice cover in 
the western Beaufort Sea was likely altered because sea ice 
cover changed, not because beluga distribution changed. 
Similarly, Hauser et al. (2017) found that satellite-tagged 
belugas from 1993 to 2012 selected seasonal habitat based 
on depth, slope, and proximity to bathymetric features 
like Barrow Canyon more than on sea ice variables, which 
rarely acted as the primary drivers of habitat use in summer 
or fall. 

Chi-squared permutation tests could not reject the 
hypothesis of uniform density of whales with respect to 
depth for many of the bowhead analyses or for any of the 
beluga analyses. In contrast, all of the standard chi-squared 
tests on bowhead and beluga whale sightings suggested 
that these species’ monthly and seasonal distributions 
were not uniform with respect to depth in either period. 
The apparent contradictory conclusions from the analyses 
based on number of whales vs. number of sightings imply 
that there is variability in clustering (group size) across 
the depth zones during both periods. For example, there 
were relatively large groups of belugas in the outer shelf 
(particularly near Barrow Canyon) during 2009 – 16 that 
likely minimized the difference between the observed 
and expected number of whales (under the assumption of 
uniform density) in this stratum, which had a relatively low 
number of sightings. 

Limitations of the Dataset

The ASAMM line-transect aerial surveys were designed 
to cover a broad geographic area while monitoring the 
bowhead whale migration in the western Beaufort Sea in 
areas of interest to the petroleum industry. By necessity, 
survey effort was limited both to areas of acceptable survey 
conditions and by aircraft fuel reserves, and these surveys 
have never incorporated focal animal-following protocols 
during which extensive behavioral observation sessions 
are conducted to record behaviors of multiple animals 
(Richardson et al., 1985; Würsig et al., 1985; Robertson et 
al., 2013). ASAMM observers are afforded only a brief time 
(approximately 30 – 45 seconds) to determine the behavior 
of each animal or group of animals. Whale behavior can be 
ambiguous, and establishing whale “activity” is difficult. 
For example, whales that are milling at the surface may 
be socially interacting with other whales, or staying at the 
surface between feeding dives, or both. Some behaviors, 

including water-column or near-bottom feeding, are nearly 
impossible to detect during aerial surveys. Unless an 
observer can definitively determine that a whale or group 
of whales is engaged in a specific activity (e.g., resting, 
feeding, breaching), the behavior is generally recorded as 
“swim,” although it is quite possible that that whale was 
engaged in other behaviors that were not obvious during 
a brief overflight. Seasonality has occasionally been used 
to assist with defining bowhead whale activity (summer 
= feeding; fall = migrating), but data collected during 
aerial surveys (this study and others) and from satellite-
telemetered whales (Citta et al., 2015) have shown that 
behavior cannot be assumed on the basis of season. 

The degree to which anthropogenic activity affected 
whale behavior in the western Beaufort Sea cannot be 
quantified from ASAMM survey data. Anthropogenic 
activities, which may include seismic operations, offshore 
drilling, and vessel traffic varying in size from small 
boats to icebreakers and cruise ships, have been shown to 
affect bowhead and beluga whale behavior in other studies 
(Richardson et al., 1985, 1986, 1990; Lesage et al., 1999; 
Blackwell et al., 2013, 2015). In some years anthropogenic 
activity appeared more extensive (e.g., in 2012, when 
offshore drilling occurred in the central Alaskan Beaufort 
Sea; Bisson et al., 2013), but reliable assessments of when 
and where commercial, seismic, and recreational activity 
occurred in the Beaufort Sea in most years are not available. 
Reeves et al. (2014), for example, included a summary 
figure of shipping in the Arctic in 2012 based on the activity 
of all vessels outfitted with Automatic Identification System 
(AIS) transponders. The figure shows almost no activity in 
the western Beaufort Sea when, in fact, 11 vessels traveled 
more than 38 000 km from mid-August through late 
October as part of the Shell drilling operation (Patterson et 
al., 2013). Those activities were likely not included in the 
Reeves et al. (2014) figure, either because the Shell vessels 
did not have AIS transponders or because information from 
the transponders was not available. 

Sighting rates derived from ASAMM data represent 
relative density, and at present, they cannot be corrected 
to provide absolute density for lack of correction 
factors related to availability bias specific to the Turbo 
Commander, the aircraft type used for most of the 
2009 – 16 surveys. Starting in 2018, ASAMM survey 
protocols will be enhanced to collect the data necessary 
to calculate availability bias. In addition, dive data from 
satellite-telemetered bowhead whales in 2007 – 12 are 
being analyzed for surface and dive time intervals (J. Citta, 
pers. comm. 2017). Furthermore, analyses to determine 
perception bias are currently underway.

SUMMARY AND CONCLUSIONS

In 2009 – 16, bowhead whales in the western Beaufort 
Sea were found on the continental slope in mid-July, moved 
into nearshore inner shelf waters by August, and remained 
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on the inner shelf through September and October. Use 
of the western Beaufort Sea by bowheads has therefore 
shifted to approximately one month earlier compared to 30 
years ago. Bowheads use the western Beaufort Sea inner 
shelf for migrating between the eastern Beaufort Sea and 
the northwestern Chukchi Sea, but when environmental 
conditions aggregate prey, bowheads take advantage of 
those conditions to feed and may be found in very large 
groups in some years. Bowhead feeding in the western 
Beaufort Sea is nonexistent in some years and a dominant 
behavior in other years, and the presence of large feeding 
groups has a strong effect on relative density. Diminished 
sea ice cover has likely indirectly affected bowhead whale 
distribution, migratory timing, and habitat preference by 
decreasing foraging opportunities in the eastern Beaufort 
Sea and possibly increasing productivity in the western 
Beaufort Sea in some years. 

Beluga whales in 2009 – 16 remained offshore in 
continental slope habitat in summer and fall, as had 
been observed in 1982 – 91. The sighting rate in summer 
2009 – 16 was three times as great as in fall 2009 – 16. ECS 
and EBS belugas both would be expected to occur west of 
140˚ W, but it is likely that the majority of belugas from both 
stocks spend greater proportions of time in basin waters, 
beyond the extent of the ASAMM study area. Beluga depth 
preference remained identical over a span of more than 30 
years. Sea ice cover does not appear to have had a strong 
effect on beluga distribution and migratory timing in the 
western Beaufort Sea. 

Multiyear monthly and seasonal analyses of aerial survey 
data are necessary to detect trends and track changes that 
are occurring in the western Beaufort Sea ecosystem. The 
shift to earlier occurrence of bowhead whales (from August 
to July) and the continued use of the continental slope by 
beluga whales in summer are two phenomena recorded 
in the western Beaufort Sea over a 30-year time span. 
Aerial surveys conducted in the western Beaufort Sea in 
summer and fall 2009 – 16 also documented considerable 
interannual variability in distributions, sighting rates, and 
behaviors of bowhead and beluga whales, emphasizing 
the continued importance of annual sampling. The eastern 
boundary of the study area (140˚ W) is arbitrary with regard 
to whales and ecosystems; broadening survey coverage 
to simultaneously cover the western and eastern parts 
of the Beaufort Sea would be beneficial in documenting 
the effects of ecosystem changes on bowhead and beluga 
whales throughout the Beaufort Sea environment.
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