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A DISCRETE FAÀ DI BRUNO’S FORMULA

PEDRO DUARTE AND MARIA JOANA TORRES

Abstract. We derive a discrete Faà di Bruno’s formula that rules the
behaviour of finite differences under composition of functions with vector
values and arguments.

1. Introduction

The Faà di Bruno’s formula gives an expression for the n-th derivative
(n ≥ 1) of the composition f ◦ g of two functions f and g in terms of
derivatives of f and g. This formula has many versions, depending on the
type of derivatives considered. To simplify assumptions we shall always
assume that f and g are both smooth functions, where smooth function
means a function of class C∞. Assume first that f and g are real valued
functions of one real argument. Faà di Bruno gave the formula, in this case,
in two short papers [5], [6] of 1855 and 1857, without proof or stated sources.
The formula is

(1.1)

(f ◦ g)(n)(x) =
∑ n!

b1! · · · bn!
f (b1+···+bn)(g(x))

(
g′(x)

1!

)b1
· · ·

(
g(n)(x)

n!

)bn
,

where the sum is taken over all solutions (b1, . . . , bn) ∈ Nn of the equation

b1 + 2 b2 + · · ·+ n bn = n.

We note that N = {0, 1, . . .} starts with zero, so that bi ≥ 0 for every
i = 1, . . . , n. Faà di Bruno also gave an alternative version of (1.1) in the
form of a determinant.

According to Lukacs [21], the need for such a formula was already recogni-
zed as early as volume 1 of the second edition of Lacroix’s Traité du calcul
différential et du calcul intégral of 1810 [20]. In [18], Johnson points out that
Lacroix actually solves the problem in volume 3, which came out in 1819.
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Johnson also signals two other appearences of the formula previous to Faà
di Bruno. More recentely, Craik in his paper [4], disagrees with Johnson’s
evaluation of Arbogast’s Du Calcul des Dérivations of 1800 [1], and argues
this is the first reference to the formula, fifty-five years before Faà di Bruno’s
formulation. He also examines some early work by British authors on Faà di
Bruno’s formula not mentioned by Johnson. As Craik puts it, the formula
“might as appropriately be named after one of the ten or more authors who
obtained versions of it before Faà di Bruno”. Craik suggests that only the
determinantal formulation should be attributed to Faà di Bruno.

Assume next that f and g are functions between Euclidean spaces of
possibly different dimensions, the domain of f containing the range of g. Let
e1, . . . , ek be vectors in the Euclidean domain of g. The list e = (e1, . . . , ek)
will be referred as a k-multi-vector. Given α = (α1, . . . , αk) ∈ Nk and a point
x in the domain of g, we denote by Dαgx(e) the derivative Dα1

e1 ◦· · ·◦D
αk
ek
g(x)

of order |α| = α1 + · · ·+ αk. Given α ∈ Nk, let

[α] = {β = (β1, . . . , βk) ∈ Nk |β ≤ α } = {0, β1, β2, . . . , βm},
where β ≤ α means that βi ≤ αi for all i = 1, . . . , k. Then, Faà di Bruno’s
formula takes the form (see [3], [8], [13], [16], [22]):

(1.2)

Dα(f◦g)x(e) =
∑ α!

b1! · · · bm!
D(b1,...,bm)fg(x)

(
Dβ1

gx(e)

(β1)!
, . . . ,

Dβmgx(e)

(βm)!

)
,

where the sum is taken over all solutions (b1, . . . , bm) ∈ Nm of the equation

b1β
1 + b2β

2 + · · ·+ bmβ
m = α,

and α! = α1!α2! · · · αk! when α = (α1, . . . , αk).
Assume now the multi-index α belongs to the discrete cube Ik = {0, 1}k.

In this case we have α! = 1, βi! = 1, and bi ∈ {0, 1}, which implies bi! = 1,
for all i = 1, . . . ,m. Then formula (1.2) reduces to

Dα(f ◦ g)x(e) =
∑

D(b1,...,bm)fg(x)

(
Dβ1

gx(e), . . . , Dβmgx(e)
)
,

where the sum is taken over all solutions (b1, . . . , bm) ∈ Nm of the equation

b1β
1 + b2β

2 + · · ·+ bmβ
m = α.

We can simplify this formula a little more.

Definition 1.1. Given a multi-index α ∈ Ik, a partition of α with size r
is any subset with r elements {α1, . . . , αr} ⊆ Ik − {0} such that α1 + · · · +
αr = α. More generally, given α ∈ Ik, Pα denotes the set of all partitions
ξ = {α1, . . . , αr} of α.

Of course the size r must range between 1 and |α|, since the smallest
partition {α} has size 1, and

∣∣αi∣∣ ≥ 1 for each αi in some partition. Then

(1.3) Dα(f ◦ g)x(e) =
∑

α1+···+αr=α

Drfg(x)

(
Dα1

gx(e), . . . , Dαrgx(e)
)
,
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where the sum is taken over all partitions of α with size ranging from 1 to |α|.
Formula (1.3) is at the same time a special case and an extension of (1.2).
Given α ∈ Nk, take ẽ to be the r-multi-vector with αi components equal to
ei, for each i = 1, . . . , k, where r = |α|. Set α̃ ∈ Ir = {0, 1}r to be the multi-
index with all components equal to 1. Then Dα(f ◦ g)x(e) = Dα̃(f ◦ g)x(ẽ).
Grouping and counting equal terms we can derive (1.2) from (1.3).

The Faà di Bruno’s formula is useful in different domains of analysis,
statistics, and computational calculus; for example, see [7], [9], [11], [14], [15],
[17], [21] and for a discussion of the computational aspects, see also [10].

In [12] a discrete version of Faà di Bruno’s formula is derived in terms
of divided differences. In this paper we deal with finite differences instead
of divided differences which allows us to state a discrete version of Faà di
Bruno’s formula with functorial behaviour. The history of finite difference
calculus goes back a long way, parallel to that of infinitesimal calculus. We
refer to [2] and [19] for classical treatments of this calculus. We briefly recall
some basic definitions in order to state our discrete version of Faà di Bruno’s
formula that behaves functorially.

Given two Euclidean spaces X and Y , let Y X denote the space of all
functions f : X → Y . For each vector u ∈ X, let τu be the translation
operator defined by (τuf)(x) = f(x + u). We define the difference operator
along vector u, ∆u : Y X → Y X , by ∆u = τu − id, which corresponds to
setting

∆uf(x) = f(x+ u)− f(x) .

Notice these operators always commute, i.e., ∆u ◦∆v = ∆v ◦∆u for all vec-
tors u, v ∈ X, since τv ◦ τu = τu+v = τu ◦ τv. More generally, we will consider
compositions of difference operators along possibly repeated vectors.

Definition 1.2. Given a multi-vector u = (u1, · · · , uk) ∈ Xk, a finite dif-
ference operator of order k, along the multi-vector u, is the composition
operator ∆k

u : Y X → Y X defined by ∆k
u = ∆u1 ◦ ∆u2 ◦ · · · ◦ ∆uk . More

generally, given α ∈ Nk, ∆α
u = (∆u1)α1 ◦ . . . ◦ (∆uk)αk denotes a difference

operator of order |α|.

Next we introduce an algebra of symbolic finite difference expressions. Let
x, y, . . . be symbols representing points, u1, u2, . . . be symbols representing
vectors, and f, g, . . . be symbols representing functions. We denote by D

the set of all symbolic finite difference expressions, which we define as the
smallest set of expressions such that:

(1) if x is a symbol representing a point then x ∈ D,
(2) if u is a symbol representing a vector then u ∈ D,
(3) if t ∈ D and f is a symbol representing a function then f(t) ∈ D,
(4) if t, s ∈ D then t+ s ∈ D,
(5) if α ∈ Nk, s, t1, . . . , tk ∈ D and f is a symbol representing a function

then ∆α
(t1,...,tk)f(s) ∈ D.
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We consider as equal all terms which formally can be proved to be equal using
property transformation rules of finite differences. Of course, depending on
the interpretation given to the point, vector and function symbols, many
terms in D will be formal but meaningless expressions. We define recursively
the order of a term ord : D→ N:

(1) if x is a symbol representing a point then ord(x) = 0,
(2) if u is a symbol representing a vector then ord(u) = 1,
(3) if t ∈ D and f is a symbol representing a function then ord(f(t)) = 0,
(4) if t, s ∈ D then ord(t+ s) = min{ord(t), ord(s)},
(5) if α ∈ Nk, s, t1, . . . , tk ∈ D and f is a symbol representing a function

then ord(∆α
(t1,...,tk)f(s)) = α1 ord(t1) + · · ·+ αk ord(tk).

Given a term t = ∆α
(t1,...,tk)f(s) ∈ D which is meaningful for some interpre-

tation of its symbols (all functions being smooth), if all vectors ui in t are

small of order ε, then t is small of order εord(t). The following theorem is
our main result. Let X, Y and Z stand for Euclidean spaces.

Theorem 1.3. Given maps f ∈ Y X and g ∈ XZ , a multi-vector u ∈ Zk
and α ∈ Ik,

(1.4) ∆α
u(f ◦ g)(x) =

∑
α1+···+αn=α

∆n
∆α1
u g(x),...,∆αn

u g(x)
f ( g(x) ) + · · · ,

where the ellipsis stand for higher order terms and the sum is taken over all
partitions of α with size ranging from 1 to |α|.

The next theorem gives an explicit formula for (1.4).

Theorem 1.4. Given α ∈ Ik, there are recursively defined sets Aξ
0, A

ξ
α1 , . . . ,

A
ξ
αr associated with each partition ξ = {α1, . . . , αr} of α, such that

(1) the sets A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr are pairwise disjoint,

(2) β ∈ A
ξ
β ⊂ [α], for β = 0, α1, . . . , αr,

(3) |γ| > |β|, for every γ ∈ A
ξ
β − {β}, and

for any given maps f ∈ Y X and g ∈ XZ , and any multi-vector u ∈ Zk,

(1.5) ∆α
u(f ◦ g)(x) =

∑
ξ={α1,...,αr}∈Pα

∆ r
uξ
α1
, ..., uξαr

f(uξ0),

where uξβ =
∑

γ∈Aξβ
∆γ
ug(x), for each β = 0, α1, . . . , αr.

See Theorem 3.8 in Section 3. Note that uξ0 = g(x) + · · · , with remainder∑
γ∈Aξ0−{0}

∆γ
ug(x), and for each i, uξ

αi
= ∆αi

u g(x) + · · · , with remainder∑
γ∈Aξ

αi
−{αi}∆γ

ug(x). By Theorem 1.4(3) both these remainders are terms

of higher order.
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2. The Infinitesimal Formula

Let D ⊆ X be an open domain and f ∈ Y D. The tangent space T (D),
and the tangent map Tf : T (D) → T (Y ), are defined to be T (D) = D×
X, respectively Tf(x, u) = (f(x), Duf(x)). The chain rule shows that the
construct T is a functor, which essentially means that T (f ◦ g) = Tf ◦
Tg. Inductively, we can define higher order tangent spaces and tangent
maps, by setting T k(D) = T (T k−1(D)) and T k(f) = T (T k−1(f)). Then
the iterated correspondence T k becomes also a functor. The tangent map of
order k, T k(f) can be explicitly expressed in terms of higher order directional
derivatives of f . As we shall see the pattern of these expressions rules the
behaviour of higher order derivatives under composition. To get an explicit
expression for T k(f), we need some special notation to denote elements in
T k(D). We shall call any family u = (uα)α∈Ik of vectors in X indexed over

the discrete cube Ik = {0, 1}k a k-cuboid of X. Notice that any k-cuboid
u can be thought of as a pair of (k − 1)-cuboids, obtained by restricting
its indices to the two opposite faces {k = 0} and {k = 1} of the discrete
cube Ik. More precisely, u is identified with the pair (u0, u1), where u0 =
(u(α,0))α∈Ik−1 and u1 = (u(α,1))α∈Ik−1 . Therefore, we can and shall identify

the tangent space T k(X) with the set of all k-cuboids of X:

T k(X) = {u = (uα)α∈Ik |uα ∈ X for all α ∈ Ik}.

The k-tangent space T k(D), to an open domain D, is the set of all k-cuboids
u ∈ T k(X) whose base point u0 belongs to D. The k-tangent space over a
point x ∈ D is the set T kx (D) of all u ∈ T k(D) such that u0 = x. We shall
use the multi-index derivative notation

Dα
uf(x) = (Du1)α1 ◦ · · · ◦ (Duk)αk f(x).

Because multi-indices are cumbersome to write, we shall adopt the fol-
lowing writing convention. Given a cuboid u ∈ T k(X), ui1,...,in stands
for the component uα, where α is the multi-index (α1, . . . , αk) defined by
αj = 1, if j ∈ {i1, . . . , in}, αj = 0 otherwise. Given a multi-index u =

(u1, . . . , uk) ∈ Xk we shall denote by 〈〈x;u〉〉, the k-cuboid w such that
w0 = x,w1 = u1, . . . , wk = uk, and wi1,...,in = 0 for all n ≥ 2. With this
notation it is very easy to check that

Proposition 2.1. If f ∈ Y X is a map of class Ck, then for all x ∈ X,
u ∈ Xk,

T k(f) (〈〈x;u〉〉) = (Dα
uf(x))α∈Ik .

The notation ∑
α1+···+αn=α

Aα1,...,αn

will always denote a sum taken over all partitions of α (see Definition 1.1)
with size ranging from 1 to |α|.
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Proposition 2.2. Given a map f ∈ Y X of class Ck, and a k-cuboid u ∈
T kx (X), writing T kf u = (Tαf u)α∈Ik , we have for each α ∈ Ik

(2.1) Tαf u =
∑

α1+···+αn=α

D n
uα1 ,...,uαn

f(x).

Proof. This proposition is proved by induction. �

Let us call the sum
∣∣α1
∣∣+ · · ·+ |αn| the order of the term D n

uα1 ,...,uαn
f(x).

Then, it is clear that the expression (2.1) is homogeneous, as all summands
have order |α|.

We give a couple of examples:

T (1,1)(f)(u) = Du1,2f(x) +D2
u1, u2f(x),

and

T (1,1,1)(f)(u) = Du1,2,3f(x)

+D2
u1, u2,3f(x) +D2

u2, u1,3f(x) +D2
u3, u1,2f(x)

+D3
u1, u2, u3f(x).

From Proposition 2.1, we see that the tangent map pattern (2.1) rules the
behaviour of higher order derivatives under composition.

Proposition 2.3. Given maps f ∈ Y X and g ∈ XZ of class Ck, and a
multi-vector u ∈ Zk, we have for each α ∈ Ik

Dα
u (f ◦ g)(x) =

∑
α1+···+αn=α

D n
Dα1u g(x),...,Dαnu g(x)

f (g(x)) .

Proof. We have that

Dα
u (f ◦ g)(x) = Tα(f ◦ g)〈〈x;u〉〉

= Tα(f)T k(g)〈〈x;u〉〉

= Tα(f)
(
Dβ
ug(x)

)
β∈Ik

=
∑

α1+···+αn=α

D n
Dα1u g(x),...,Dαnu g(x)

f(x).

�

3. The Discrete Formula

In order to characterize finite difference operators, consider as before the
discrete cube Ik = {0, 1}k as a set of multi-indices. Given α ∈ Ik, we write
α = (α1, · · · , αk), where each αi represents a binary digit, αi = 0 or αi = 1.
The set Ik is partially ordered by the relation

α ≤ β ⇔ αi ≤ βi, for all i = 1, . . . , k.

We also write |α| = α1 + · · ·+αk and α ·u = α1 u1 + · · ·+αk uk. A simple
computation shows that
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Proposition 3.1. Given f ∈ Y X , for all x ∈ X, and u ∈ Xk,

∆α
uf(x) =

∑
β≤α

(−1)|α|−|β|f (x+ β · u) .

A key property of the difference operator ∆ is the following kind of addi-
tivity.

Proposition 3.2. Given f ∈ Y X , for all x ∈ X, and u, v ∈ X,

(3.1) ∆u+vf(x) = ∆uf(x) + ∆vf(x+ u).

We define now a discrete equivalent of the k-tangent map to f : X → Y .
This will be a mapping Tk(f) : T k(X) → T k(Y ). The construct Tk will
again be a functor. For that purpose we introduce the difference operator
∆ : T k(X)→ T k(X),

∆u = (∆αu)α∈Ik , where ∆αu =
∑
β≤α

(−1)|α|−|β|uβ.

Notice that ∆0u = u0. The operator ∆ is invertible. Its inverse is the sum
operator ∆−1 : T k(X)→ T k(X),

∆−1u =

∑
β≤α

uβ


α∈Ik

.

The correspondence f ∈ Y X  f∗ : T k(X)→ T k(Y ),

f∗(xα)α∈Ik = (f(xα))α∈Ik ,

is obviously a functor. Thus, defining Tk(f) = ∆ ◦ f∗ ◦ ∆−1, the corre-
spondence f  Tk(f) is conjugated to f  f∗. Therefore, Tk behaves
functorially too.

Proposition 3.3. Given f ∈ Y X , for all x ∈ X, and u ∈ Xk,

Tk(f) (〈〈x;u〉〉) = (∆α
uf(x))α∈Ik .

Proof. It is enough to notice that ∆−1〈〈x;u〉〉 = (x+ α · u)α∈Ik . �

We shall say that any component uα, of a k-cuboid u, has order |α|. Then,
we define recursively the order of a finite difference term ∆n

u1,...,unf(x) to
be the sum of the orders of terms u1, . . . , un. Each term ui can either be
some cuboid component, as in the proposition below, or else another finite
difference term, as in Theorem 1.3. In both cases, the formulas for Tαfu
and ∆α

u(f ◦ g)(x), respectively, have a main part which is a sum of order |α|
terms, plus a remainder consisting of terms with order greater than |α|.
Proposition 3.4. Given f ∈ Y X and u ∈ T kx (X), and writing
Tkf u = (Tαf u)α∈Ik , we have for each α ∈ Ik

(3.2) Tαf u =
∑

α1+···+αn=α

∆n
uα1 ,...,uαn

f(x) + · · · ,

where the ellipsis stand for a sum of higher order terms.
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Proof. This proposition follows from Theorem 3.8 in this section, using the
property (3.1) to expand differences. �

We recall that given α ∈ Ik, Pα denotes the set of all partitions ξ =
{α1, . . . , αn} of α. The multi-index obtained from α adding digit 1 at the
end will be denoted by α♦1. Therefore α♦1 belongs to Ik+1 and has order
|α♦1| = |α|+ 1. Next lemma relates Pα and Pα♦1.

Lemma 3.5. Given ξ = {α1, . . . , αn} ∈ Pα, consider the partitions of α♦1

ξ̃0 = {0♦1, α1♦0, . . . , αn♦0}, of size n+ 1,

ξ̃i = {α1♦0, . . . , αi♦1, . . . , αn♦0}, of size n, for 1 ≤ i ≤ n.

These partitions exhaust Pα♦1 without repetitions,

Pα♦1 = {ξ̃i | 0 ≤ i ≤ n and ξ ∈ Pα}.

Given two k-cuboids u, v ∈ T k(X), we shall denote by w = [[u, v]] the
unique (k + 1)-cuboid such that wα♦0 = uα and wα♦1 = vα.

Lemma 3.6. Given f ∈ Y X , for all u, v ∈ T k(X),

(1) ∆−1[[u, v]] =
[[

∆−1u, ∆−1(u+ v)
]]

,

(2) ∆[[u, v]] = [[∆u, ∆v −∆u]],

(3) Tk+1(f)[[u, v]] = [[Tk(f)u, Tk(f)(u+ v)− Tk(f)u]].

Lemma 3.7. Given f ∈ Y X , for all x ∈ X, w ∈ X, and u, v ∈ Xk,

∆n
(u1+v1), ..., (un+vn)f(x+ w)−∆n

u1, ..., unf(x) =

= ∆n+1
w,u1, ..., unf(x) +

n∑
i=1

∆n
u1, ..., ui−1, vi, (ui+1+vi+1), ..., (un+vn)f(x+ w + ui).

Proof. Follows by repeated application of (3.1). �

We call maximum order of a partition ξ = {α1, . . . , αn} ∈ Pα to the
number

maxord(ξ) := max{
∣∣α1
∣∣ , . . . , |αn|}.

Theorem 3.8. Given α ∈ Ik, there are recursively defined sets,

A
ξ
0, A

ξ
α1 , . . . ,A

ξ
αr , associated with each partition ξ = {α1, . . . , αr} of α,

such that

(1) the sets A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr are pairwise disjoint,

(2) β ∈ A
ξ
β ⊂ [α], for β = 0, α1, . . . , αr,

(3) 0 < γ < α and |γ| < maxord(ξ), for every γ ∈ A
ξ
0 − {0},

(4) αi < γ < α and |γ| ≤ maxord(ξ), for every γ ∈ A
ξ
αi
− {αi}, and
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for any given map f ∈ Y X and any multi-vector u ∈ Zk,

(3.3) Tαf u =
∑

ξ={α1,...,αr}∈Pα

∆ r
uξ
α1
, ..., uξαr

f(uξ0) ,

where uξβ =
∑

γ∈Aξβ
uγ, for each β = 0, α1, . . . , αr.

Proof. This proposition is proved by induction on k. It is obvious when
α ∈ Ik with k ≤ 2. Assume it holds when k ≤ n. Any given multi-
index α ∈ Ik+1 is of the form α♦0 or α♦1. Since the first case follows by
the induction hypothesis, we now restrict our attention to the second case.
Given w ∈ T k+1(X), write it as a pair w = [[u, v]] of k-cuboids u, v ∈ T k(X).
Using Lemma 3.7 we deduce

Tα♦1(f)(w) = Tα♦1(f)[[u, v]] = Tα(f)(u+ v)− Tα(f)u

=
∑

ξ={α1,...,αn}∈Pα

∆n
uξ
α1

+vξ
α1
, ..., uξαn+vξαn

f(uξ0 + vξ0) − ∆n
uξ
α1
, ..., uξαn

f(uξ0)

=
∑

ξ={α1,...,αn}∈Pα

∆n+1

vξ0 ,u
ξ

α1
, ..., uξαn

f(uξ0)

+
n∑
i=1

∆n
uξ
α1
, ..., uξ

αi−1 , v
ξ

αi
, (uξ

αi+1+vξ
αi+1 ), ..., (uξαn+vξαn )

f(uξ0 + vξ0 + uξ
αi

).

To finish the proof we just need to establish a one-to-one correspondence
between summands above and partitions in Pα♦1. Using the notation intro-

duced in Lemma 3.5, the partition ξ̃0 is associated with the first summand,
while the partitions ξ̃i (1 ≤ i ≤ n) are associated each with one of the subse-
quent n summands. Making these identifications we arrive at the equation
between the previous sum and the following one:

Tα♦1(f)(w) =
∑

ξ={α1,...,αn}∈Pα

(
∆n+1

w
ξ̃0
0♦1,w

ξ̃0
α1♦0

, ..., w
ξ̃0
αn♦0

f(wξ̃00♦0) +

+

n∑
i=1

∆n

w
ξ̃
αi

α1♦0
, ..., w

ξ̃
αi

αi−1♦0
, w

ξ̃
αi

αi♦1
..., w

ξ̃
αi
αn♦1

f(w
ξ̃αi
0♦0)

)
,

which, by Lemma 3.5, yields

Tα♦1(f)(w) =
∑

ξ̃={β1,...,βr}∈Pα♦1

∆ r

wξ̃
β1
, ..., wξ̃βr

f(wξ̃0).

We assume that uξβ =
∑

γ∈Aξβ
uγ , and similar relations hold for vξβ, wξ̃β�0,

etc. Then, matching terms, we arrive at the following recursive equations

on the sets A
ξ̃i
β :
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
A
ξ̃0
0♦0 = A

ξ
0 � 0,

A
ξ̃0
0♦1 = A

ξ
0 � 1,

A
ξ̃0
αi♦0

= A
ξ
αi
� 0,

and 
A
ξ̃i
αi♦1

= A
ξ
αi
♦1, if j = i,

A
ξ̃i
αj♦0

= A
ξ
αj
♦0, if j < i,

A
ξ̃i
αj♦0

= A
ξ
αj
♦0, ∪Aξ

αj
♦1 if j > i,

A
ξ̃i
0♦0 = A

ξ
0♦0 ∪ A

ξ
0♦1 ∪ A

ξ
αi
♦0,

where A � i = {β � i |β ∈ A } for i = 0, 1. These recursive relations ensure
that Tα♦1(f)(w) has the correct development (3.3). It is now easy to check
inductively that these sets satisfy the conditions (1), (2), (3), and (4). �

We prove now Theorem 1.3 and Theorem 1.4 stated in the Introduction.

Proof of Theorem 1.3. The statement of Theorem 1.3 can be obtained as an
elementary corollary of Theorem 3.8 via Proposition 3.4. Indeed we have
that

∆α
u(f ◦ g)(x) = Tα(f ◦ g)〈〈x;u〉〉

= Tα(f)Tk(g)〈〈x;u〉〉

= Tα(f)
(

∆β
ug(x)

)
β∈Ik

=
∑

α1+···+αn=α

∆n
∆α1
u g(x),...,∆αn

u g(x)
f ( g(x) ) + · · ·

where the ellipsis stand for a sum of higher order terms. �

Proof of Theorem 1.4. The statement of Theorem 1.4 can be obtained as an
elementary corollary of Theorem 3.8: we just need to set uγ = ∆γ

ug(x) in
Theorem 3.8 and note that Tαfu = ∆α

u(f ◦ g)(x). �

An algorithm that produces explicit expressions for Tαfu has been de-
vised, which was also used to confirm the correction of the above recursive
definitions.1 The following formulas were computer generated by this pack-
age.

T(1,1)f(u) = ∆u1,2f (u0 + u2 + u1)

+ ∆2
u1,u2f (u0) ,

1The source code can be retrieved from
http://ptmat.fc.ul.pt/∼pduarte/Research/FiniteDifferences/index.html.
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T(1,1,1)f(u) = ∆u1,2,3f (u0 + u3 + u2 + u2,3 + u1 + u1,3 + u1,2)

+ ∆2
u1,u2,3f (u0 + u3 + u2)

+ ∆2
u1,3,u2+u2,3f (u0 + u3 + u1)

+ ∆2
u1,2,u3+u2,3+u1,3f (u0 + u2 + u1)

+ ∆3
u1,u2,u3f (u0) ,

∆2
v(f ◦ g)(x) = ∆∆2

v1,v2
g(x)f (g(x) + ∆v1g (x) + ∆v2g (x))

+ ∆2
∆v1g(x),∆v2g(x)f (g(x)) ,

and

∆3
v(f ◦ g)(x) = ∆∆3

v1,v2,v3
g(x)f

(
g(x) + ∆v1g(x) + ∆v2g(x) + ∆v3g(x)

+ ∆2
v1,v2g(x) + ∆2

v1,v3g(x) + ∆2
v2,v3g(x)

)
+ ∆2

∆v1g(x),∆2
v2,v3

g(x)f
(
g(x) + ∆v2g(x) + ∆v3g(x)

)
+ ∆2

∆2
v1,v3

g(x),∆v2g(x)+∆2
v2,v3

g(x)f
(
g(x) + ∆v1g(x) + ∆v3g(x)

)
+ ∆2

∆2
v1,v2

g(x),∆v3g(x)+∆2
v1,v3

g(x)+∆2
v2,v3

g(x)f
(
g(x) + ∆v1g(x)

+ ∆v2g(x)
)

+ ∆3
∆v1g(x),∆v2g(x),∆v3g(x)f(g(x)).
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plications, Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520.
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CMAT, Departamento de Matemática e Aplicações, Universidade do Minho,
Campus de Gualtar, 4700-057 Braga, Portugal

E-mail address: jtorres@math.uminho.pt


