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ON UNIFORMLY RESOLVABLE {K,, P,}-DESIGNS WITH
k=34

MARIO GIONFRIDDO AND SALVATORE MILICI

ABSTRACT. Given a collection of graphs H, a uniformly resolvable -
design of order v is a decomposition of the edges of K, into isomorphic
copies of graphs from #H (also called blocks) in such a way that all blocks
in a given parallel class are isomorphic to the same graph from H. We
consider the case H = {Ka, P} with k& = 3,4, and prove that the
necessary conditions on the existence of such designs are also sufficient.

1. INTRODUCTION

Given a collection of graphs H, an H-design of order v is a decomposition
of the edges of K, into isomorphic copies of graphs from 7, the copies
of H € H in the decomposition are called blocks. An H-design is called
resolvable if it is possible to partition the blocks into classes P; such that
every point of K, appears exactly once in some block of each P;.

A resolvable H-decomposition of K, is sometimes also referred to as a
‘H-factorization of K,, a class can be called an H-factor of K,. The case
where H is a single edge (K3) is known as a 1-factorization of K, and it is
well known to exist if and only if v is even. A single class of a 1-factorization,
a pairing of all points, is also known as a 1-factor or a perfect matching. A
resolvable H-design is called uniform if every block of the class is isomorphic
to the same graph from H. Of particular note is the result of Rees [10] which
finds necessary and sufficient conditions for the existence of uniformly re-
solvable { Ky, K3}-designs of order v. Uniformly resolvable decompositions
of K, have also been studied in [2, 3, 4, 5, 6, 7, 8, 9, 12, 11, 14, 13]. In
what follows, we will denote by [a1,...,ag], k > 2, the path P, having ver-
tex set {a1,...,ar} and edge set {{a1,a2},{az,as},...,{ax_1,ar}}. Ifvis
even and k € {3,4}, let (K3, P;)-URD(v;7, s) denote a uniformly resolvable
decomposition of K, into r classes containing only copies of 1-factors and s
classes containing only copies of paths Py. Let URD(v; K2, Py) denote the
set of all pairs (7, s) such that there exists a (K3, Py)-URD(v;r,s).
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Given v =0 (mod 6), define J;(v) according to the following table:

v J1(v)
(mod 12) | {(v — 1 — 4z, 3x), 1: 0,1,...,(v—4)/4}
(mod 12) | {(v — 1 —42,3x),2 =0,1,..., (v —2)/4}
TABLE 1. The set J;(v).

0 T
6 T

Given v =0 (mod 4), define J5(v) according to the following table:

)
0 [ 0,1,...,(v—23)/3}
4 (mod 12) | {(v—1-3z,22),2=0,1,...,(v—1)/3}
8 { 0,1
)

(v—1-3z,2z),2=0,1,...,(v—2)/3}

In this paper, the main purpose is to investigate the existence problem of
a (K2, P;)-URD(v;r,s) of K, for k = 3,4. We completely solve the spec-
trum problem for such design; i.e., characterize the existence of uniformly
resolvable { Ky, Py }-designs of order v, by proving the following result:

Main Theorem.
(i) A (K2, P3)-URD(v;r,s) exists if and only if v = 0 (mod 6) and
URD—(U;KQ,Pg):Jl(U).
(ii) A (K2, P1)-URD(v;r,s) exists if and only if v = 0 (mod 4) and
URD—(U;KQ,Pg):JQ(U).

2. PRELIMINARIES AND NECESSARY CONDITIONS

In this section we will introduce some useful definitions, results, and give
necessary conditions for the existence of a uniformly resolvable decomposi-
tion of K, into r classes of 1-factors and s classes of paths Py, k = 3,4.
For missing terms or results that are not explicitly explained in the paper,
the reader is referred to [1] and its online updates. For some results below,
we also cite this handbook instead of the original papers. A (resolvable)
‘H-decomposition of the complete multipartite graph with u parts each of
size g is known as a resolvable group divisible design H-RGDD of type g%,
the parts of size g are called the groups of the design. When H = K, we will
call it an n-(R)GDD. A (K3, P;)-URGDD (r,s) of type g* is a uniformly
resolvable decomposition of the complete multipartite graph with u parts
each of size g into r classes containing only copies of 1-factors and s classes
containing only copies of paths P.

If the blocks of an H-GDD of type g“ can be partitioned into partial
parallel classes, each of which contain all points except those of one group,
we refer to the decomposition as a frame.
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A incomplete resolvable (K2, Py)-decomposition of K, with a hole of size
h is an (K3, Py)-decomposition of K, — K} in which there are two types of
classes, full classes and partial classes which cover every point except those
in the hole (the points of K} are referred to as the hole). Specifically a
(K2, Py)-IURD(v + h, h; [r1, s1], [F1, 51]) is a uniformly resolvable (K3, Py)-
decomposition of K, ., — Kp with r; 1-factors which cover only the points
not in the hole, s; partial classes of paths P, which cover only the points
not in the hole, 71 1-factors and §; full classes of paths Py which cover every
point of K, p.

Lemma 2.1. If there exists a (Ko, P3)-URD(v;r,s) of K, then v = 0

(mod 6) and (r,s) € Ji(v).

Proof. The condition v = 0 (mod 6) is trivial. Let D be a (Ka, Ps3)-

URD(v;r, s) of K,. Counting the edges of K, that appear in D we obtain
rv, 2 _v-1)

2 3 2 ’
and hence
(2.1) 3r+4s=3(v—1).
This equation implies that 3r = 3(v — 1) (mod 4) and 4s = 3(v —
1) (mod 3). Then we obtain

e r=3 (mod4) and s=0 (mod 3) for v =0 (mod 12),

er=1 (mod4) and s=0 (mod 3) for v=6 (mod 12).
Letting now s = 3z, the equation (2) yields r = (v — 1) — 4z. Since r and
s cannot be negative, and x is an integer, the value of x has to be in the
range as given in the definition of Ji(v). This completes the proof. O

Lemma 2.2. If there exists a (Ko, P1)-URD(v;r,s) of K, then v = 0
(mod 4) and (r,s) € J2(v).

Proof. The condition v = 0 (mod 4) is trivial. Let D be a (Ka, Py)-
URD(v;r, s) of K,. Counting the edges of K, that appear in D we obtain

o, 3sv_vfv—l)
2 4 2 7
and hence

(2.2) 2r +3s =2(v—1).
This equation implies that
2r=2(v—1) (mod 3) and 3s=2(v—1) (mod 2).

Then we obtain

e r=2 (mod 3) and s=0 (mod 2) for v=0 (mod 12),
e r=0 (mod3) and s=0 (mod 2) for v=4 (mod 12),
e r=1 (mod3) and s=0 (mod 2) for v=28 (mod 12).
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Letting now s = 2x, the equation (2) yields r = (v — 1) — 3z. Since r and
s cannot be negative, and x is an integer, the value of x has to be in the
range as given in the definition of J2(v). This completes the proof. O

We now recall some results that can be used to produce the main result.
Theorem 2.3. [10] There exists a (Ko, K3)-URD(v;r,s), r,s > 0, if and

only if
(1) v=0 (mod 6),

(2) (r,s)e{(v—1-2z,2),2=1,2,..., }
(3) with the two exceptions (v,s) = ( ) ,5).
Theorem 2.4. [9] Let v = 0 (mod 3), v > 9. The union of any two

edge-disjoint parallel classes of 3-cycles of K, can be decomposed into three
parallel classes of Ps.

We also need the following definitions. Let (s1,t1) and (s2,t2) be two
pairs of non-negative integers. Define (s1,t1) + (s2,t2) = (s1+ s2,t1 +t2). If
X and Y are two sets of pairs of non-negative integers, then X +Y denotes
the set {(s1,t1) + (s2,t2) : (s1,t1) € X, (s2,t2) € Y}. If X is a set of pairs of
non-negative integers and h is a positive integer, then A * X denotes the set
of all pairs of non-negative integers which can be obtained by adding any h
elements of X together (repetitions of elements of X are allowed).

3. SMALL CASES
Lemma 3.1. URD(6; K3, P3) = {(5,0),(1,3)}.

Proof. The case (5,0) corresponds to a 1-factorization of the complete bi-
partite graph K which is known to exist [1]. For the case (1,3), let
V(K12) = Zg, and the classes as listed below:

{{0,1},{2,3},{4,5}},{[1,4,5], [2, 3, 6]}, {[3, 1, 5], [4, 2, 6]}, {[1, 6, 4], [2, 5, 3] }.

([
Lemma 3.2. There exists a (Ko, Py)-URGDD(r, s) of type 62 with (r,s) €
{(0,4),(3,2),(6,0)}

Proof. The case (6,0) corresponds to a 1-factorization of the complete bipar-
tite graph Kg g which is known to exist [1]. The case (0,4) corresponds to a
(K2, Py)-URGDD(0,4) which is known to exist [15]. For the case (3,2) take
the groups to be {1,2,3,4,5,6,7,8},{a,b,c,d,e, f} and the classes listed
below:

{{1, ¢}, {2,d}, {3, e}, {4, F}, {5, a}, {6, b}},
{{1,d},{2,c}. {3, f}, {4, ¢}, {5,0}, {6, a}},
{{1,0},{2, e}, {3, ¢}, {4, a}, {5, f},{6,d}},

{[17 a7 27 b:l’ [37 d? 47 C]7 [57 67 67 f]}? {[47 b? 37 a]’ [67 C7 5’ d:l’ [e’ ]‘7 f7 2]}'
O
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Lemma 3.3. URD(12; K>, P;) = {(11,0), (8,2), (5,4), (2,6)}.

Proof. The case (11,0) corresponds to a 1-factorization of the complete
graph Kjo which is known to exist [1]. The rest of the cases are given
explicitly below.
e (8,2),(5,4).
Take a (Ko, P;)-URGDD(r, s) of type 62 with (r,s) € {(0,4), (3,2)},
which come from Lemma 3.2. Fill in each of the groups of size 6 with
the same 1-factorization of Kg. This gives a (K2, Py)-URD(12;7, s)
for each (r,s) € {(5,0) + 4% {(0,4),(3,2),(6,0)}}.

e (2,6).
Let V(Ki2) ={0,1,...,11} be the vertex set and the classes listed
below
{0, 2,3],[47 , ,7],[8,9, 10,11]},{[1,3,0,2],[5,7,4,6],[9,11,8,10] },
{[0,4,1,5],8,6,9,7],[10,2,11, 3]}, {[1,7,0,6], (2,8, 3,9], 11,5, 10, 4] },
{19,4,8,5],[11,0,10,1},[3,6,2,7]}, {[2,5, 3,4],[8,1,9,0],[10, 7,11, 6]},
{{0.8), {111}, {2.4}. {3.7). {6.10}. {5,9}}
{{0,5},{1,6},{2,9},{3, 10}, {4, 11}, {7, 8} }.
]

Lemma 3.4. There ezists a (K2, Py)-IURD(8,2;[1,0],[r,s]) with (r,s) €
{(6,0),(3,2),(0,4)}.

Proof. Let the point set be V' = {a,b,0,1,2,3,4,5} and let {a, b} be the hole.
Let F={F1, F»,..., F;} be a 1-factorization of Kg such that {a,b} € F}.
o A (K», P;)-TURD(S,2:[1,0],[6,0))
—{a,b}, {Fy,..., Fr}.
o A (K», P;)-TURD(S,2:[1,0],[3,2))
1= {a’ b}v {{07 b}7 {17 5}7 {27 (1}, {37 4}}7
{{4,6},{a,5},{2,3},{0,

0,1}}, {{0,3},{b,5},{2,1},{3,0}},
{10, a,1,b],[3,5,2,4]}, {[2,b,3,4a],[5,0,4,1]}.
e A (Ky, P;)-IURD(8,2;[1,0],[0,4])
—{a,b}, {[0,a,1,b],[3,5,2,4]}, {[2,b,3,q],[5,0,4,1]},
{12,a,5,b],[1,0,3,4]}, {[0,b,4,a],[5,1,2,3]}.
O
Lemma 3.5. URD(8; Ky, Py) = {(7,0),(4,2),(1,4)}.
Proof. The assertion follows from Lemma 3.4. O

4. MAIN RESULTS
Lemma 4.1. For every v =0 (mod 6) J1(v) C URD(v; K2, P3).

Proof. For v = 6 the conclusion follows from Lemma 3.1. For v > 12,
take a (Ko, K3)-URD(v;v — 1 — 4¢,2t) with ¢ € {0,1,...,(v — 4)/4} for
v=0 (mod 12)and t € {0,1,...,(v—2)/4} for v =6 (mod 12), which exists
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by Theorem 2.3. Applying Theorem 2.4 we obtain a (Ks, P3)-URD(v;v —
1 4t,3t).
([l

Lemma 4.2. For every v =4 (mod 12), Jy(v) CURD(v; Ko, Py).

Proof. Let Ry, Ra,...,Rs—1 be the parallel classes of a resolvable {Kj}-
3

design R of order v. Place on each block of a given resolution class of R
the same (K2, Py)-URD(4;r, s) with (r, s) € {(3,0),(0,2)}. Since R contains
(v —1)/3 parallel classes the result is a (K3, Py)-URD(v;r, s) of K, for each
(r,s) € (v—1)/3%{(3,0),(0,2)}. This implies

—1
URD(: e, P 2 {1 (.00, 0.2}
Since
v—1 v—1
3 *{(3,0),(0,2)}:{(v—l—3x,2x),x:0,..., 3 }:Jg(v),
we obtain the proof. O

Lemma 4.3. For every v =0 (mod 12) Jo(v) C URD(v; K2, Py).

Proof. For v = 12 the conclusion follows from Lemma 3.3. For v > 24
start with a 22RGDD G of type 21z [1]. Give weight 6 to each point of
this 2-GDD and place on each edge of a given resolution class the same
(K2, Py)-URGDD(r, s) of type 62, with (r,s) € {(6,0),(3,2),(0,4)}, which
exists by Lemma 3.2. Fill the groups of sizes 12 with the same (Ko, Py)-
URD(12;r,s), with (r,s) € {(11,0),(8,2),(5,4),(2,6)}, which exists by
Lemma 3.3. Since G contains (v — 12)/6 resolution classes the result is a
(K2, Py)-URD(v;r,s) of K, for each (r,s) € {{(11,0), (8,2), (5,4),(2,6)} +
(v—12)/6%{(6,0),(3,2),(0,4)}}. This implies

URD(v; Ko, Py) 2

{tano.6.2.6.0.c.01+ 52 0.0).6.2.0.0 .

Since
v—12
6

*{(6,0),(3,2)7(0,4)}: {(1)_12_3‘%,’2‘%)’33:O"””U—312}7

it easy to see that

{tan0.6.2.6.0.c.00+ U5 4 (60.0,.6.2.00) | = 20,

This completes the proof. O

Lemma 4.4. For every v =8 (mod 12) Jy(v) C URD(v; K2, Py).



132 MARIO GIONFRIDDO AND SALVATORE MILICI

Proof. For v = 8 the conclusion follows from Lemma 3.5. For v > 8 start
with a 2—frame F of type 1% [14] with groups G, i =1,...,(v—2)/6. Let
p; be the partial parallel class which miss the group G;. Expand each point 6
times and add a set H of 2 ideal points a1, ae. Foreach i =1,...,(v—2)/6,
place on G; x {1,...,6}UH the same (K3, P,)-IURD(8, 2;[1,0], [z, y]) D; of
Kg-Ks with (z,y) € {(6,0),(3,2),(0,4)}, which exists by Lemma 3.4, in such
a way the hole covers the point of H. For each i =1,..., (v —2)/6, place on
each block of the p; partial parallel class the same (K3, Py)-URGDD(r3, s2)
of type 62 with (12, s2) € {(6,0),(3,2),(0,4)}, which exists by Lemma 3.2.

v—2
Add the edge {a1, as} of H to the partial classes of D; and form, on UZ.:T1 G; X
{1,...,6} U H, 1 class of 1-factors. For each i = 1,...,(v — 2)/6, add the
full classes of D; to the classes of p; and form r3 classes of 1-factors and s3
classes of Py-factors with (73, s3) € {(6,0), (3,2), (0,4)}. Since each group G;
is missed by 1 partial parallel class of F' we obtain a (K2, Py)-URD (v;r, s)
for each (r,s) € {(1,0) + (v — 2)/6 % {(6,0), (3,2), (0,4)} }. This implies

2 1(0,4),(3,2), (6,0)}}.

v —

URD(v; Ko, Py) 2 {(1,0) +
Since

”gQ*{<o,4>,<3,2>,<6,o>}= {(v—1—3w72m>ax=07~"v§2}’

it easy to see that {(1,0) + (v —2)/6 % {(6,0),(3,2),(0,4)}} = J2(v). This
completes the proof.

O

5. CONCLUSION
We are now in a position to prove the main result of the paper.

Theorem 5.1. For every v =0 (mod 6), we have URD(v; Ko, P3) = J1(v)
and, for every v =0 (mod 4), we have URD(v; Ko, Py) = Jo(v).

Proof. Necessity follows from Lemmas 2.1 and 2.2. Sufficiency follows from
Lemmas 4.1, 4.2, 4.3 and 4.4. This completes the proof. ([

Remark: Note that the existence of uniformly resolvable {Kj, Py }-designs
with k > 4 is very difficult to study and it is currently under investigation.
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