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ON UNIFORMLY RESOLVABLE {K2, Pk}-DESIGNS WITH

k = 3, 4

MARIO GIONFRIDDO AND SALVATORE MILICI

Abstract. Given a collection of graphs H, a uniformly resolvable H-
design of order v is a decomposition of the edges of Kv into isomorphic
copies of graphs from H (also called blocks) in such a way that all blocks
in a given parallel class are isomorphic to the same graph from H. We
consider the case H = {K2, Pk} with k = 3, 4, and prove that the
necessary conditions on the existence of such designs are also sufficient.

1. Introduction

Given a collection of graphs H, an H-design of order v is a decomposition
of the edges of Kv into isomorphic copies of graphs from H, the copies
of H ∈ H in the decomposition are called blocks. An H-design is called
resolvable if it is possible to partition the blocks into classes Pi such that
every point of Kv appears exactly once in some block of each Pi.

A resolvable H-decomposition of Kv is sometimes also referred to as a
H-factorization of Kv, a class can be called an H-factor of Kv. The case
where H is a single edge (K2) is known as a 1-factorization of Kv and it is
well known to exist if and only if v is even. A single class of a 1-factorization,
a pairing of all points, is also known as a 1-factor or a perfect matching. A
resolvable H-design is called uniform if every block of the class is isomorphic
to the same graph from H. Of particular note is the result of Rees [10] which
finds necessary and sufficient conditions for the existence of uniformly re-
solvable {K2,K3}-designs of order v. Uniformly resolvable decompositions
of Kv have also been studied in [2, 3, 4, 5, 6, 7, 8, 9, 12, 11, 14, 13]. In
what follows, we will denote by [a1, . . . , ak], k ≥ 2, the path Pk having ver-
tex set {a1, . . . , ak} and edge set {{a1, a2}, {a2, a3}, . . . , {ak−1, ak}}. If v is
even and k ∈ {3, 4}, let (K2, Pk)-URD(v; r, s) denote a uniformly resolvable
decomposition of Kv into r classes containing only copies of 1-factors and s
classes containing only copies of paths Pk. Let URD(v;K2, Pk) denote the
set of all pairs (r, s) such that there exists a (K2, Pk)-URD(v; r, s).
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Given v ≡ 0 (mod 6), define J1(v) according to the following table:

v J1(v)
0 (mod 12) {(v − 1− 4x, 3x), x = 0, 1, . . . , (v − 4)/4}
6 (mod 12) {(v − 1− 4x, 3x), x = 0, 1, . . . , (v − 2)/4}

Table 1. The set J1(v).

Given v ≡ 0 (mod 4), define J2(v) according to the following table:

v J2(v)
0 (mod 12) {(v − 1− 3x, 2x), x = 0, 1, . . . , (v − 3)/3}
4 (mod 12) {(v − 1− 3x, 2x), x = 0, 1, . . . , (v − 1)/3}
8 (mod 12) {(v − 1− 3x, 2x), x = 0, 1, . . . , (v − 2)/3}

Table 2. The set J2(v).

In this paper, the main purpose is to investigate the existence problem of
a (K2, Pk)-URD(v; r, s) of Kv for k = 3, 4. We completely solve the spec-
trum problem for such design; i.e., characterize the existence of uniformly
resolvable {K2, Pk}-designs of order v, by proving the following result:

Main Theorem.

(i) A (K2, P3)-URD(v; r, s) exists if and only if v ≡ 0 (mod 6) and
URD-(v;K2, P3)=J1(v).

(ii) A (K2, P4)-URD(v; r, s) exists if and only if v ≡ 0 (mod 4) and
URD-(v;K2, P3)=J2(v).

2. Preliminaries and necessary conditions

In this section we will introduce some useful definitions, results, and give
necessary conditions for the existence of a uniformly resolvable decomposi-
tion of Kv into r classes of 1-factors and s classes of paths Pk, k = 3, 4.
For missing terms or results that are not explicitly explained in the paper,
the reader is referred to [1] and its online updates. For some results below,
we also cite this handbook instead of the original papers. A (resolvable)
H-decomposition of the complete multipartite graph with u parts each of
size g is known as a resolvable group divisible design H-RGDD of type gu,
the parts of size g are called the groups of the design. When H = Kn we will
call it an n-(R)GDD. A (K2, Pk)-URGDD (r, s) of type gu is a uniformly
resolvable decomposition of the complete multipartite graph with u parts
each of size g into r classes containing only copies of 1-factors and s classes
containing only copies of paths Pk.

If the blocks of an H-GDD of type gu can be partitioned into partial
parallel classes, each of which contain all points except those of one group,
we refer to the decomposition as a frame.
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A incomplete resolvable (K2, P4)-decomposition of Kv with a hole of size
h is an (K2, P4)-decomposition of Kv+h−Kh in which there are two types of
classes, full classes and partial classes which cover every point except those
in the hole (the points of Kh are referred to as the hole). Specifically a
(K2, P4)-IURD(v + h, h; [r1, s1], [r̄1, s̄1]) is a uniformly resolvable (K2, P4)-
decomposition of Kv+h −Kh with r1 1-factors which cover only the points
not in the hole, s1 partial classes of paths P4 which cover only the points
not in the hole, r̄1 1-factors and s̄1 full classes of paths P4 which cover every
point of Kv+h.

Lemma 2.1. If there exists a (K2, P3)-URD(v; r, s) of Kv, then v ≡ 0
(mod 6) and (r, s) ∈ J1(v).

Proof. The condition v ≡ 0 (mod 6) is trivial. Let D be a (K2, P3)-
URD(v; r, s) of Kv. Counting the edges of Kv that appear in D we obtain

rv

2
+

2sv

3
=

v(v − 1)

2
,

and hence

(2.1) 3r + 4s = 3(v − 1).

This equation implies that 3r ≡ 3(v − 1) (mod 4) and 4s ≡ 3(v −
1) (mod 3). Then we obtain

• r ≡ 3 (mod 4) and s ≡ 0 (mod 3) for v ≡ 0 (mod 12),
• r ≡ 1 (mod 4) and s ≡ 0 (mod 3) for v ≡ 6 (mod 12).

Letting now s = 3x, the equation (2) yields r = (v − 1) − 4x. Since r and
s cannot be negative, and x is an integer, the value of x has to be in the
range as given in the definition of J1(v). This completes the proof. �

Lemma 2.2. If there exists a (K2, P4)-URD(v; r, s) of Kv then v ≡ 0
(mod 4) and (r, s) ∈ J2(v).

Proof. The condition v ≡ 0 (mod 4) is trivial. Let D be a (K2, P4)-
URD(v; r, s) of Kv. Counting the edges of Kv that appear in D we obtain

rv

2
+

3sv

4
=

v(v − 1)

2
,

and hence

(2.2) 2r + 3s = 2(v − 1).

This equation implies that

2r ≡ 2(v − 1) (mod 3) and 3s ≡ 2(v − 1) (mod 2) .

Then we obtain

• r ≡ 2 (mod 3) and s ≡ 0 (mod 2) for v ≡ 0 (mod 12),
• r ≡ 0 (mod 3) and s ≡ 0 (mod 2) for v ≡ 4 (mod 12),
• r ≡ 1 (mod 3) and s ≡ 0 (mod 2) for v ≡ 8 (mod 12).
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Letting now s = 2x, the equation (2) yields r = (v − 1) − 3x. Since r and
s cannot be negative, and x is an integer, the value of x has to be in the
range as given in the definition of J2(v). This completes the proof. �

We now recall some results that can be used to produce the main result.

Theorem 2.3. [10] There exists a (K2,K3)-URD(v; r, s), r, s > 0, if and
only if

(1) v ≡ 0 (mod 6),
(2) (r, s) ∈ {(v − 1− 2x, x), x = 1, 2, . . . , v−22 },
(3) with the two exceptions (v, s) = (6, 2), (12, 5).

Theorem 2.4. [9] Let v ≡ 0 (mod 3) , v ≥ 9. The union of any two
edge-disjoint parallel classes of 3-cycles of Kv can be decomposed into three
parallel classes of P3.

We also need the following definitions. Let (s1, t1) and (s2, t2) be two
pairs of non-negative integers. Define (s1, t1) + (s2, t2) = (s1 + s2, t1 + t2). If
X and Y are two sets of pairs of non-negative integers, then X + Y denotes
the set {(s1, t1) + (s2, t2) : (s1, t1) ∈ X, (s2, t2) ∈ Y }. If X is a set of pairs of
non-negative integers and h is a positive integer, then h ∗X denotes the set
of all pairs of non-negative integers which can be obtained by adding any h
elements of X together (repetitions of elements of X are allowed).

3. Small cases

Lemma 3.1. URD(6;K2, P3) = {(5, 0), (1, 3)}.

Proof. The case (5, 0) corresponds to a 1-factorization of the complete bi-
partite graph K6 which is known to exist [1]. For the case (1, 3), let
V (K12) = Z6, and the classes as listed below:

{{0, 1}, {2, 3}, {4, 5}}, {[1, 4, 5], [2, 3, 6]}, {[3, 1, 5], [4, 2, 6]}, {[1, 6, 4], [2, 5, 3]}.
�

Lemma 3.2. There exists a (K2, P4)-URGDD(r, s) of type 62 with (r, s) ∈
{(0, 4), (3, 2), (6, 0)}.

Proof. The case (6, 0) corresponds to a 1-factorization of the complete bipar-
tite graph K6,6 which is known to exist [1]. The case (0, 4) corresponds to a
(K2, P4)-URGDD(0, 4) which is known to exist [15]. For the case (3, 2) take
the groups to be {1, 2, 3, 4, 5, 6, 7, 8}, {a, b, c, d, e, f} and the classes listed
below:

{{1, c}, {2, d}, {3, e}, {4, f}, {5, a}, {6, b}},
{{1, d}, {2, c}, {3, f}, {4, e}, {5, b}, {6, a}},
{{1, b}, {2, e}, {3, c}, {4, a}, {5, f}, {6, d}},

{[1, a, 2, b], [3, d, 4, c], [5, e, 6, f ]}, {[4, b, 3, a], [6, c, 5, d], [e, 1, f, 2]}.
�
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Lemma 3.3. URD(12;K2, P4) = {(11, 0), (8, 2), (5, 4), (2, 6)}.

Proof. The case (11, 0) corresponds to a 1-factorization of the complete
graph K12 which is known to exist [1]. The rest of the cases are given
explicitly below.

• (8, 2), (5, 4).
Take a (K2, P4)-URGDD(r, s) of type 62 with (r, s) ∈ {(0, 4), (3, 2)},
which come from Lemma 3.2. Fill in each of the groups of size 6 with
the same 1-factorization of K6. This gives a (K2, P4)-URD(12; r, s)
for each (r, s) ∈ {(5, 0) + 4 ∗ {(0, 4), (3, 2), (6, 0)}}.
• (2, 6).

Let V (K12) = {0, 1, . . . , 11} be the vertex set and the classes listed
below:
{[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]},{[1, 3, 0, 2], [5, 7, 4, 6], [9, 11, 8, 10]},
{[0, 4, 1, 5], [8, 6, 9, 7], [10, 2, 11, 3]}, {[1, 7, 0, 6], [2, 8, 3, 9], [11, 5, 10, 4]},
{[9, 4, 8, 5], [11, 0, 10, 1], [3, 6, 2, 7]}, {[2, 5, 3, 4], [8, 1, 9, 0], [10, 7, 11, 6]},
{{0, 8}, {1, 11}, {2, 4}, {3, 7}, {6, 10}, {5, 9}},
{{0, 5}, {1, 6}, {2, 9}, {3, 10}, {4, 11}, {7, 8}}.

�

Lemma 3.4. There exists a (K2, P4)-IURD(8, 2; [1, 0], [r, s]) with (r, s) ∈
{(6, 0), (3, 2), (0, 4)}.

Proof. Let the point set be V = {a, b, 0, 1, 2, 3, 4, 5} and let {a, b} be the hole.
Let F={F1, F2, . . . , F7} be a 1-factorization of K8 such that {a, b} ∈ F1.

• A (K2, P4)-IURD(8, 2; [1, 0], [6, 0])
F1 − {a, b}, {F2, . . . , F7}.
• A (K2, P4)-IURD(8, 2; [1, 0], [3, 2])
F1 − {a, b}, {{0, b}, {1, 5}, {2, a}, {3, 4}},
{{4, b}, {a, 5}, {2, 3}, {0, 1}}, {{0, 3}, {b, 5}, {2, 1}, {3, 0}},
{[0, a, 1, b], [3, 5, 2, 4]}, {[2, b, 3, a], [5, 0, 4, 1]}.
• A (K2, P4)-IURD(8, 2; [1, 0], [0, 4])
F1 − {a, b}, {[0, a, 1, b], [3, 5, 2, 4]}, {[2, b, 3, a], [5, 0, 4, 1]},
{[2, a, 5, b], [1, 0, 3, 4]}, {[0, b, 4, a], [5, 1, 2, 3]}.

�

Lemma 3.5. URD(8;K2, P4) = {(7, 0), (4, 2), (1, 4)}.

Proof. The assertion follows from Lemma 3.4. �

4. Main results

Lemma 4.1. For every v ≡ 0 (mod 6) J1(v) ⊆ URD(v;K2, P3).

Proof. For v = 6 the conclusion follows from Lemma 3.1. For v ≥ 12,
take a (K2,K3)-URD(v; v − 1 − 4t, 2t) with t ∈ {0, 1, . . . , (v − 4)/4} for
v ≡ 0 (mod 12) and t ∈ {0, 1, . . . , (v−2)/4} for v ≡ 6 (mod 12), which exists
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by Theorem 2.3. Applying Theorem 2.4 we obtain a (K2, P3)-URD(v; v −
1− 4t, 3t).

�

Lemma 4.2. For every v ≡ 4 (mod 12), J2(v) ⊆ URD(v;K2, P4).

Proof. Let R1, R2, . . . , R v−1
3

be the parallel classes of a resolvable {K4}-
design R of order v. Place on each block of a given resolution class of R
the same (K2, P4)-URD(4; r, s) with (r, s) ∈ {(3, 0), (0, 2)}. Since R contains
(v− 1)/3 parallel classes the result is a (K2, P4)-URD(v; r, s) of Kv for each
(r, s) ∈ (v − 1)/3 ∗ {(3, 0), (0, 2)}. This implies

URD(v;K2, P4) ⊇
{
v − 1

3
∗ {(3, 0), (0, 2)}

}
.

Since

v − 1

3
∗ {(3, 0), (0, 2)} =

{
(v − 1− 3x, 2x), x = 0, . . . ,

v − 1

3

}
= J2(v),

we obtain the proof. �

Lemma 4.3. For every v ≡ 0 (mod 12) J2(v) ⊆ URD(v;K2, P4).

Proof. For v = 12 the conclusion follows from Lemma 3.3. For v ≥ 24
start with a 2-RGDD G of type 2

v
12 [1]. Give weight 6 to each point of

this 2-GDD and place on each edge of a given resolution class the same
(K2, P4)-URGDD(r, s) of type 62, with (r, s) ∈ {(6, 0), (3, 2), (0, 4)}, which
exists by Lemma 3.2. Fill the groups of sizes 12 with the same (K2, P4)-
URD(12; r, s), with (r, s) ∈ {(11, 0), (8, 2), (5, 4), (2, 6)}, which exists by
Lemma 3.3. Since G contains (v − 12)/6 resolution classes the result is a
(K2, P4)-URD(v; r, s) of Kv for each (r, s) ∈ {{(11, 0), (8, 2), (5, 4), (2, 6)} +
(v − 12)/6 ∗ {(6, 0), (3, 2), (0, 4)}}. This implies

URD(v;K2, P4) ⊇{
{(11, 0), (8, 2), (5, 4), (2, 6)}+

(v − 12)

6
∗ {(6, 0), (3, 2), (0, 4)}

}
.

Since

v − 12

6
∗ {(6, 0), (3, 2), (0, 4)} =

{
(v − 12− 3x, 2x), x = 0, . . . ,

v − 12

3

}
,

it easy to see that{
{(11, 0), (8, 2), (5, 4), (2, 6)}+

(v − 12)

6
∗ {(6, 0), (3, 2), (0, 4)}

}
= J2(v).

This completes the proof. �

Lemma 4.4. For every v ≡ 8 (mod 12) J2(v) ⊆ URD(v;K2, P4).
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Proof. For v = 8 the conclusion follows from Lemma 3.5. For v > 8 start

with a 2−frame F of type 1
v−2
6 [14] with groups Gi, i = 1, . . . , (v−2)/6. Let

pi be the partial parallel class which miss the group Gi. Expand each point 6
times and add a set H of 2 ideal points a1, a2. For each i = 1, . . . , (v− 2)/6,
place on Gi×{1, . . . , 6}∪H the same (K2, P4)-IURD(8, 2; [1, 0], [x, y]) Di of
K8-K2 with (x, y) ∈ {(6, 0), (3, 2), (0, 4)}, which exists by Lemma 3.4, in such
a way the hole covers the point of H. For each i = 1, . . . , (v−2)/6, place on
each block of the pi partial parallel class the same (K2, P4)-URGDD(r2, s2)
of type 62 with (r2, s2) ∈ {(6, 0), (3, 2), (0, 4)}, which exists by Lemma 3.2.

Add the edge {a1, a2} of H to the partial classes of Di and form, on ∪
v−2
6

i=1 Gi×
{1, . . . , 6} ∪ H, 1 class of 1-factors. For each i = 1, . . . , (v − 2)/6, add the
full classes of Di to the classes of pi and form r3 classes of 1-factors and s3
classes of P4-factors with (r3, s3) ∈ {(6, 0), (3, 2), (0, 4)}. Since each group Gi

is missed by 1 partial parallel class of F we obtain a (K2, P4)-URD (v; r, s)
for each (r, s) ∈ {(1, 0) + (v − 2)/6 ∗ {(6, 0), (3, 2), (0, 4)}}. This implies

URD(v;K2, P4) ⊇
{

(1, 0) +
v − 2

6
∗ {(0, 4), (3, 2), (6, 0)}

}
.

Since

v − 2

6
∗ {(0, 4), (3, 2), (6, 0)} =

{
(v − 1− 3x, 2x), x = 0, . . . ,

v − 2

3

}
,

it easy to see that {(1, 0) + (v − 2)/6 ∗ {(6, 0), (3, 2), (0, 4)}} = J2(v). This
completes the proof.

�

5. Conclusion

We are now in a position to prove the main result of the paper.

Theorem 5.1. For every v ≡ 0 (mod 6), we have URD(v;K2, P3) = J1(v)
and, for every v ≡ 0 (mod 4), we have URD(v;K2, P4) = J2(v).

Proof. Necessity follows from Lemmas 2.1 and 2.2. Sufficiency follows from
Lemmas 4.1, 4.2, 4.3 and 4.4. This completes the proof. �

Remark: Note that the existence of uniformly resolvable {K2, Pk}-designs
with k > 4 is very difficult to study and it is currently under investigation.
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