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PERMUTATIONS AVOIDING CONNECTED SUBGRAPHS

NORBERT SAUER AND IMED ZAGUIA

Abstract. There is a permutation of the vertices of a tree for which
no proper subtree on at least two vertices is mapped to a subtree, if and
only if twice the number of its endpoints is less than or equal to the
number of points of the tree; Theorem 4.3. The following more general
result follows:

Let G = (V (G), E(G)) be a simple graph and let C(G) be the set of
subsets A  V (G) which induce a connected subgraph of G containing
at least two vertices and let Π(G) be the set of permutations of V (G)
which do not map an element of C(G) to an element of C(G). In the
case where G has n vertices and at most n−1 edges we give a necessary
and sufficient condition on G so that Π(G) 6= ∅.

1. Introduction

Investigations into the interaction of the symmetric group on a set S with
a relational structure on S, in particular for example a graph or a partial
order, have led to important results in a variety of mathematical disciplines.
Almost all of those investigations are special cases of the following general
setting. Relate elements g of the symmetric group on S to pairs of structure
properties ϕ and ψ so that ϕ(A) implies ψ(g(A)) for all subsets A of S.
If property ϕ is equal to property ψ then the elements g of the symmetric
group on S preserving property ϕ form a subgroup of the symmetric group.
Which need not be the case if ϕ is not equal to ψ. Furthermore every
subgroup of the symmetric group on S induces a relational structure via the
orbits of tuples of elements of S under the action of the group. Such group
actions are studied extensively in group theory but are also of considerable
importance in model theory. For example Fräıssé limits, see [9] or [10], are
essentially determined by their groups of automorphisms. In studies related
to the distinguishing number, the relational structure is expanded so that
the group of its automorphisms consists only of the identity, see for example
[5], [11], [12].

Relating elements g of the symmetric group to structure properties ϕ so
that ϕ(A) implies ¬ϕ(g(A)) leads to packing type problems. For example
let a graph with V as set of vertices and E as set of edges be given. If ϕ
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stands for two vertices are adjacent and ψ for two vertices are not adjacent,
then an element g of the symmetric group mapping adjacent pairs of ver-
tices to nonadjacent pairs of vertices, is a packing. In this case ϕ is ¬ψ,
a situation we wish to understand further. Another example of ϕ = ¬ψ
arises from the notion of orthogonality in the theory of clones, an abstract
setting for the study of switching circuits. Let P be a partial order on a
set V . An endomorphism of P is an order-preserving map of V to V . Two
partial order relations on the same set are orthogonal if their only common
endomorphisms, are the identity map and the constant maps. Clones and
perpendicular orders are related by the following result:

Theorem 1.1 ([16], [13]). To every pair of orthogonal orders on a set of
at least three elements, there corresponds a pair of clones intersecting in the
clone consisting of the projections and the constant maps.

The first examples of pairs of orthogonal finite orders were given by
Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenović [6]; those
orders were in fact bipartite. More examples can be found in [7]. Orthogo-
nal linear orders led to the notion of a simple permutation motivated by the
Stanley–Wilf conjecture, now settled by Marcus and Tardös [14]. A. Nozaki,
M. Miyakawa, G. Pogosyan and I. G. Rosenberg studied the existence of a
linear order orthogonal to a given linear order. They showed that for two
linear orders to be orthogonal it is necessary and sufficient that they have no
common nontrivial interval [15] and also that the proportion of linear orders
orthogonal to a given linear order tends to 1/e2 as the size of the underlying
set tends to infinity. For some of the literature on orthogonal partial orders
and related notions on graphs see for example [17], [8], [21], [19].

Let V be a set. A binary relation on V is a subset ρ of the Cartesian
product V × V , but for convenience we write xρy instead of (x, y) ∈ ρ. A
map f : V → V preserves ρ if:

xρy ⇒ f(x)ρf(y)

for all x, y ∈ V .
A binary structure is a pair R := (V, (ρi)i∈I) where V is a set and each ρi

is a binary relation on V .
If R := (V, (ρi)i∈I) and R′ := (V ′, (ρ′i)i∈I) are two binary structures, a

homomorphism of R into R′ is a map f : V → V ′ such that the implication

(1.1) xρiy ⇒ f(x)ρ′if(y)

holds for every x, y ∈ V , i ∈ I. If f is one-to-one and implication (1.1)
above is a logical equivalence, this is an embedding.

Let R := (V, (ρi)i∈I) be a binary relational structure. An autonomous set
of R, or an interval of R, is a subset A of V so that for all elements a and a′

in A and all v ∈ V \A there exists an isomorphism f of the substructure of R
induced by {v, a} to the substructure of R induced by {v, a′} with f(v) = v
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and f(a) = a′. Hence, if for example R is an oriented graph, then A is an
autonomous set for R if for all A ⊆ V , all a and a′ in A, (v, a) is an edge if
and only if (v, a′) is an edge and (a, v) is an edge if and only if (a′, v) is an
edge.

The empty set, the whole set, and the singletons are autonomous and are
called trivial. We say that R is prime if it has no nontrivial autonomous
set, it is semirigid if the identity map and the constant maps are the only
endomorphisms of R and it is embedding rigid if the identity map is the only
embedding from R to R. Finally, we say that two binary relations ρ and ρ′

on a set V are orthogonal (or perpendicular) if the binary structure (V, ρ, ρ′)
is semirigid.

Remark 1.2. Semirigidity is often defined for structures made of reflexive
relations. Indeed, in that case, all constant functions are endomorphisms
and, more generally, any map mapping an autonomous set A on an element
a ∈ A and leaving fixed the complement of A is an endomorphism. Thus, if
R is semirigid, R must be prime, and in any case, embedding rigid.

On the other hand if f is a nonconstant endomorphism of a linear order
on V and v ∈ V with |f−1(v)| ≥ 2, then f−1(v) is a nontrivial autonomous
set. Hence we obtained the following basic theorem:

Theorem 1.3. Let R = (V, ρ, ρ′) be a binary relational structures on the set
V , where ρ and ρ′ are linear orders. Then homomorphisms of R into R are
either nontrivial automorphisms or are induced by a nontrivial autonomous
set.

Consider now a linear order on a finite set, say {1, 2, . . . , n}. The order
need not be the natural order, but of course there is no loss of generality in
taking it as the natural order. Then the set of linear orders on {1, 2, . . . , n}
can be identified with the set of permutations of {1, 2, . . . , n} with the iden-
tity map identified with the natural order. A linear order on a finite set
has no nontrivial automorphism. Hence it follows from Theorem 1.3 that
a linear order of {1, 2, . . . , n} is orthogonal to the natural order if and only
if its associated permutation does not map a nontrivial interval, that is an
autonomous set, to an interval. Let G be the graph on {1, 2, . . . , n} for
which two numbers are adjacent just in case the numbers are consecutive.
It follows that in order to determine the linear orders on {1, 2, . . . , n} which
are orthogonal to the natural order, one needs to determine all permutations
of {1, 2, . . . , n} which do not map a connected subgraph of G to a connected
subgraph of G.

Given a simple graph G on a set of vertices V let C(G) be the set of
subsets A  V (G) which induce a connected subgraph of G containing at
least two vertices. Every permutation π of V which does not map an element
of C(G) to an element of C(G) does not, in particular, map an edge to an
edge. Hence π is a packing of G. We will show that for almost all graphs
with a small number of edges, such as trees, a stronger form of packing
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holds, that is, we obtain then even for the stronger form of packing results
similar to Theorems 1.4 and 1.5 below.

The notion of packing was introduced by Bollobás and Eldridge [2]. The
literature on the subject is abundant and the reader is directed to the survey
by Woźniak [20]. The following theorem was proved, independently, in [1],
[3], [18], and the next theorem in [4]. A permutation π of V is fixed point
free if π(v) 6= v for all v ∈ V .

Theorem 1.4. Let G = (V (G), E(G)) be a graph such that |E(G)| ≤
|V (G)| − 2. Then G has a fixed point free packing.

Theorem 1.4 is “best possible” in the sense that there exist graphs with
n vertices and n− 1 edges which are packable, but which cannot be packed
without fixed vertices. Consider the disjoint union of a small star and a
3-cycle: i.e., K1,2 ∪ C3 and K1,3 ∪ C3.

Theorem 1.5. Let G = (V (G), E(G)) be a graph with |V (G)| = n. If
|E(G)| ≤ n − 1, then either G has a packing or G is isomorphic to one of
the following graphs: K1 ∪ C3, K2 ∪ C3, K1 ∪ 2C3, K1 ∪ C4, K1,n−1 for
n ≥ 2, and K1,n−4 ∪ C3 for n ≥ 8.

A subset X ⊆ V (G) is said to be connected if the subgraph of G induced
by X is connected. (The empty set and all singleton sets are connected.)

Definition 1.6. For a graph G let C(G) be the set of subsets A  V (G)
which induce a connected subgraph of G containing at least two vertices. Let
X ⊆ C(G) and let Π(X,G) be the set of permutations of V (G) which do not
map an element of X to an element of X.

We pose the following general problem:

Problem 1.7. Find necessary and sufficient conditions on G so that Π(X,
G) 6= ∅.

For instance, Theorem 1.5 answers the problem when X = E(G) and
|E(G)| ≤ |V (G)| − 1. The main purpose of this paper is to prove similar
results to Theorems 1.4 and 1.5 in the case where X = C(G). In the
context of this paper we will write Π(G) for Π(C(G),G). A graph such that
Π(G) 6= ∅ is said to be strongly packable. In this case an element of Π(G)
is called a strong packing of G. Note that Π(G) 6= ∅ if G has at most two
vertices.

Our first result is the following:

Theorem 1.8. Let G = (V (G), E(G)) be a graph such that |E(G)| ≤
|V (G)| − 2. Then G has a fixed point free strong packing.

Theorem 1.8 is “best possible” in the sense that there exist graphs with
n vertices and n − 1 edges which are strongly packable, but which cannot
be strongly packed without fixed vertices. Consider the disjoint union of a
small star and a 3-cycle: i.e., K1,2 ∪ C3 and K1,3 ∪ C3.
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We should mention that the proof of the later theorem is similar to the
proof of Theorem 1.4 (see [4]). The proof is provided in Section 2.

Theorem 1.9. Let G = (V (G), E(G)) be a graph such that |V (G)| = n and
|E(G)| = n− 1 and let |e(G)| be the number of vertices of G with valency 1.

(i) If G is connected, then G has a strong packing if and only if |V (G)| ≥
2|e(G))|.

(ii) If G is disconnected, then G has a strong packing if and only if G is
not isomorphic to any of the following graphs: K2 ∪ C3, K1 ∪ 2C3,
K1 ∪ Cn−1 for n ≥ 4, and K1,n−4 ∪ C3 for n ≥ 8.

In fact, we will prove that a fixed point free strong packing exists in the
case when G is connected and |V (G)| ≥ 2|e(G))| . The proof of statement
(i) of the later theorem is included in Section 4. The proof of statement (ii)
is included in Section 3.

Throughout, a (p, q) graph is a graph that has p vertices and q edges.

2. Proof of Theorem 1.8

Henceforth , a tree T is a finite connected graph without cycles. For a
graph G = (V (G), E(G)) and X ⊆ V (G) let G − X be the subgraph of G
induced by V (G) \X.

Proof. The proof is by induction on n = |V (G)| ≥ 1.
The theorem is clearly true for n = 1, 2, and 3. We assume that it holds

for all (n, n− 2) graphs where n < k and k ≥ 4, and we consider G to be an
arbitrary (k, k − 2) graph.

First, we suppose that G has an isolated vertex v. Since G has k−2 edges,
it must possess a vertex u of degree greater than one. Then G1 = G−{u, v} is
a (k−2, k−m) graph, withm ≥ 4, so the induction hypothesis guarantees the
existence of a strong packing σ of G1 which is fixed point free. This strong
packing can be extended to a strong packing of G by defining φ(u) = v,
φ(v) = u, and φ(x) = σ(x) otherwise. It is clear that this extension has
no fixed vertices. Let A ∈ C(G) and suppose that φ(A) ∈ C(G). Then
v 6∈ A ∪ φ(A) (because otherwise A = {v} or A = {u} which is not possible
since |A| > 1). Hence, A ∩ {u, v} = ∅ = φ(A) ∩ {u, v}. It follows that
φ(A) = σ(A). Finally we have that A and σ(A) are elements of C(G1).
Then A is either empty, a singleton, or V (G1). The first two cases cannot
hold since 1 < |A|. The case A = V (G)\{u, v} = V (G1) is also not possible
because G1 is not connected (this is because |E(G1)| ≤ |V (G1)| − 2).

Henceforth, we assume that G has no isolated vertices. Since every cyclic
component having r vertices has at least r edges, the components of G must
include at least two nontrivial trees T1 and T2. If one of these trees, say
T1, is of order two, we write V (T1) = {v1, v2} and consider G2 = G− {v2},
which is a (k−1, k−3) graph. The induction hypothesis guarantees a strong
packing σ of G2. We define φ : V (G)→ V (G) as follows:
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φ(v1) = v2, φ(v2) = σ(v1), and
φ(v) = σ(v) for all v ∈ V (G1), and v 6= v1.

With this definition, it is easy to see that φ is a fixed point free permuta-
tion of V (G). Let A ∈ C(G) and suppose that φ(A) ∈ C(G). If v1 ∈ A or
v2 ∈ A, then A = {v1, v2}. Hence, φ(A) = {v2, σ(v1)} which is not connected
since σ(v1) 6= v1. Similarly if v1 ∈ φ(A) or v2 ∈ φ(A), then φ(A) = {v1, v2}.
Hence, A = {σ−1(v1), v1} which is not connected since σ−1(v1) 6= v2.

Next we suppose that A ∩ {v1, v2} = ∅ = φ(A) ∩ {v1, v2} and therefore
φ(A) = σ(A) ∈ C(G2). Since σ is a strong packing of G2 it follows that A
is either empty, a singleton, or V (G2). The first two cases cannot hold since
1 < |A|. The case A = V (G2) = V (G) \ {v2} is also not possible because
v1 6∈ A.

If neither T1 nor T2 is of order two, we form the graph G3 = G− V (T1).
Let x ∈ V (T1) be a vertex of degree at least two and y ∈ V (G3) be also
of degree at least two. Then the subgraphs T1 − {x} and G3 − {y} both
satisfy the induction hypothesis. Let σ : V (T1) \ {x} → V (T1) \ {x} and
τ : V (G3) \ {y} → V (G3) \ {y} be strong packings of T1−{x} and G3−{y}
respectively. We define φ : V (G)→ V (G) as follows:

φ(x) = y, φ(y) = x, φ(v) = σ(v) for all v ∈ V (T1) \ {x} and
φ(v) = τ(v) for all v ∈ V (G3) \ {y}.

Clearly, this produces a fixed point free permutation of V (G). Let A ∈
C(G) and suppose that φ(A) ∈ C(G). If x ∈ A, then A ⊆ V (T1) and hence
φ(A) = σ(A \ {x}) ∪ {y} which is not connected since σ(A \ {x}) ⊆ V (T1)
and y is not connected to any vertex of T1. Similarly, if y ∈ A, then
A ⊆ V (G3) and hence φ(A) = τ(A \ {y}) ∪ {x} which is not connected
since τ(A \ {y}) ⊆ V (G3) and x is not connected to any vertex of G3.
Therefore, A ∩ {x, y} = ∅ = φ(A) ∩ {x, y} and hence φ(A) = σ(A) ∈ C(T1)
or φ(A) = τ(A) ∈ C(G3). If the first case holds, and since σ is a strong
packing of T1 − {x}, then A is either empty, a singleton, or V (T1 − {x}).
The first two cases cannot hold since 1 < |A|. The last case cannot hold too
because T1−{x} is not connected (this is because x has degree at least two
in T1). If the second case holds, and since τ is a strong packing of G3−{y},
then A is either empty, a singleton, or V (G3 − {y}). The first two cases
cannot hold since 1 < |A|. The last case cannot hold because G3 − {y} is
not connected, thus completing the proof of the theorem. �

Remark 2.1. Clearly, a strong packing of graph is also a strong packing
of any subgraph obtained by deleting edges. Hence, the strong packing of
Theorem 1.8 exists for any (p, p− n) graph if n ≥ 2.

3. Proof of Theorem 1.9: disconnected graphs

Throughout, Cr denotes the cycle on r ≥ 3 elements. If G and H are
graphs with V (G)∩V (H) = ∅, then G∪H denotes their disjoint union, that
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is, V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H). Whenever we
write G ∪H it is implicitly assumed that V (G) ∩ V (H) = ∅.

Lemma 3.1. If G and H are two disconnected graphs that have strong
packings, then G ∪H has a strong packing.

Proof. Let α and β be strong packings of G and H respectively. The union
of mappings α and β provides a strong packing of G ∪H, as follows:

φ(v) = α(v), for v ∈ V (G) and φ(v) = β(v), for v ∈ V (H).

Notice that a connected subgraph of G∪H is either in a connected component
of G or H. The conclusion of the lemma follows easily since neither G nor
H is connected. �

Lemma 3.2. Let G = H ∪ K be a graph such that |V (H)| ≥ 2 and there
are two distinct vertices x, y ∈ V (H) such that H − {x, y} has a strong
packing and is either empty, a singleton, or disconnected. Moreover, assume
K∪{x, y} has a strong packing β such that {β(x), β(y)} ⊆ V (K). Then there
exists a permutation φ of V (G) such that if X ∈ C(G) and φ(X) ∈ C(G),
then X = {x, y} or φ(X) = {x, y}.

Proof. Let α ∈ Π(H−{x, y}). The union of mappings α and β provides the
required permutation, as follows:

φ(v) = α(v), for v ∈ V (H− {x, y}) and φ(v) = β(v), for v ∈ V (K) ∪ {x, y}.

Let A ∈ C(G) and suppose that φ(A) ∈ C(G). If x ∈ A or y ∈ A, then
A ⊆ V (H). It follows that A = {x} or A = {y} or A = {x, y} since x
and y are the only vertices of H that are mapped under φ to vertices of K.
The cases A = {x} and A = {y} are not possible since 1 < |A|; it follows
that A = {x, y}. Similarly, if x ∈ φ(A) or y ∈ φ(A), then φ(A) = {x, y}.
Next we suppose that A ∩ {x, y} = ∅ and φ(A) ∩ {x, y} = ∅. It follows that
either A ⊆ V (H− {x, y}) or A ⊆ V (K). If A ⊆ V (H− {x, y}), then A and
φ(A) = α(A) are elements of C(H− {x, y}) and hence A is either empty, a
singleton or V (H−{x, y}) since α ∈ Π(H−{x, y}). The first two cases are not
possible since 1 < |A|. The last case is also not possible since by assumption
H − {x, y} is either empty, a singleton or disconnected. A contradiction.
Else, A and φ(A) = β(A) are elements of C(K ∪ {x, y}) and hence A is
either empty, a singleton, or V (K∪{x, y}) since β ∈ Π(K∪{x, y}). The first
two cases are not possible since 1 < |A|. The last case is also not possible
since K ∪ {x, y} is disconnected. A contradiction. With this contradiction
the proof of the lemma is now complete. �

Corollary 3.3. Let G = H ∪ Cr where r ≥ 4 and H is a graph such that
|V (H)| ≥ 2, there are two distinct vertices x, y ∈ V (H) such that H− {x, y}
has a strong packing, and H−{x, y} is either empty, a singleton, or discon-
nected. Then G has a strong packing.
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Proof. First we prove that Cr ∪ {x, y}, for r ≥ 4, has a strong packing. Set
V (Cr) = {1, 2, ..., r} so that {i, i+ 1} ∈ E(Cr) for 1 ≤ i ≤ r (with r+ 1 = 1)
and let βr be the permutation of {1, 2, ..., r} that maps, in an increasing
order, the first br/2c elements to the even numbers in {1, 2, ..., r} and the
remaining elements are mapped, in an increasing order, to the odd numbers
in {1, 2, ..., r}. For example:

β4 =

(
1 2 3 4
2 4 1 3

)
, β5 =

(
1 2 3 4 5
2 4 1 3 5

)
, β6 =

(
1 2 3 4 5 6
2 4 6 1 3 5

)
,

and

β7 =

(
1 2 3 4 5 6 7
2 4 6 1 3 5 7

)
.

Define β to be the permutation of V (Cr ∪ {x, y}) as follows.

• If r = 4, then let

β(1) = x, β(2) = 4, β(3) = y, β(4) = 3, β(x) = 1, and β(y) = 3.

• If r = 5, then let

β(1) = x, β(2) = 4, β(3) = y, β(4) = 2, β(5) = 5, β(x) = 1, and
β(y) = 3.

• If r > 5, then let

β(br/2c+ 1) = x, β(br/2c+ 3) = y, β(i) = βr(i) if
i 6∈ {br/2c+ 1, br/2c+ 3}, β(x) = 1, and β(y) = 5.

We claim that β is a strong packing of Cr ∪ {x, y}. The proof of the cases
r = 4 and 5 is similar to the case r > 5. Next we suppose that r >
5. Let A ∈ C(Cr ∪ {x, y}) and suppose that β(A) ∈ C(Cr ∪ {x, y}). If
x ∈ A or y ∈ A, then A = {x} or A = {y} or A = {x, y}. But then
β(A) = {1, 5} (the cases A = {x} and A = {y} are not possible since
1 < |A|) which is not connected in Cr ∪ {x, y}. A contradiction. This
proves that A ∩ {x, y} = ∅. Similarly, if x ∈ β(A) or y ∈ β(A), then
β(A) = {x, y} and hence A = {br/2c+ 1, br/2c+ 3} which is not connected
in Cr∪{x, y}. A contradiction. This proves that β(A)∩{x, y} = ∅. It follows
that A ⊆ V (Cr) \ {br/2c + 1, br/2c + 3}. Since A is connected it is a set
of consecutive integers. Hence, A ⊆ {1, ..., br/2c} or A ⊆ {br/2c+ 4, ..., r}.
But then β(A) is either a set of even numbers or a set of odd numbers which
are not connected. A contradiction.

Let α ∈ Π(H − {x, y}) and φ be the union of the maps α and β. From
Lemma 3.2 we deduce that it is enough to prove that if X ∈ C(G) and
φ(X) ∈ C(G), then X 6= {x, y} or φ(X) 6= {x, y}. This is obvious from the
construction of β. The proof of the corollary is now complete. �

Corollary 3.4. The graph G = Cr ∪ Cs has a strong packing if and only if
max (r, s) ≥ 4.

Proof. If max (r, s) ≤ 3, then G = C3 ∪ C3 which is easily seen not to have
a strong packing.
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Suppose now that max (r, s) ≥ 4, say r ≥ 4. Let x, y ∈ V (Cs) be any
two distinct vertices, and in the case s ≥ 4, we impose that {x, y} 6∈ E(Cs).
Then Cs − {x, y} is either a singleton or the disjoint union of two paths
which has a strong packing by Theorem 1.8. We now apply Corollary 3.3 to
obtain a strong packing of G. �

Let F be the set of forbidden graphs: K2 ∪ C3, K1 ∪ 2C3, K1 ∪ Cn−1 for
n ≥ 4, and K1,n−4 ∪ C3 for n ≥ 8. Now, we begin by disposing of a certain
class of (n, n− 1) graphs.

Theorem 3.5. Let T be any tree. If G is the union of T and m ≥ 1 disjoint
cycles, and G 6∈ F, then G has a strong packing.

Proof. Suppose that among the m cycles of G, there is a cycle Cr with r ≥ 4.
If m = 1, then since G 6∈ F, T is nontrivial. Then either t = |V (T)| = 2 or
T has two distinct vertices x and y such that at least one of x and y has
degree at least two. Hence, T − {x, y} is either empty, a singleton, or is
disconnected and therefore has a strong packing (use Theorem 1.8 for the
last case). We can now apply Corollary 3.3 to deduce a strong packing of
G. If m > 1, then let x and y be any two distinct vertices of a cycle other
than Cr and consider the graph G1 = G − V (Cr). Then G = G1 ∪ Cr and
G1 − {x, y} is either empty, a singleton, or is disconnected. Moreover, G1

has a strong packing since it is a (k, k − p) graph for some p > 1. We can
now apply Corollary 3.3 to deduce a strong packing of G.

Having proven the theorem for graphs with a cycle Cr with r ≥ 4, as one
of its components, we assume henceforth that the m cycles of G are 3-cycles.
The remainder of the proof proceeds by induction on m.

Now assume that G has a strong packing for any graph G satisfying the
hypothesis of the theorem, where m < k and k ≥ 2. Let H be a (p, p − 1)
graph satisfying the hypothesis, where H is the union of a tree T and k
cycles C3.

Suppose that T = K1. Then k > 2, otherwise H ∈ F. We now exhibit a
strong packing of k C3. Let {xi, yi, zi} be the vertices of the ith copy of C3

for 0 ≤ i ≤ k − 1. Define the permutation φ of ∪ki=1{xi, yi, zi} as follows:

φ(xi) = xi, φ(yi) = yi+1 mod k and φ(zi) = zi+2 mod k for all 1 ≤ i ≤ k.

It can be easily verified that φ is a strong packing. Hence, H has a strong
packing.

Suppose T is the star K1,n and k = 2, 3, or 4. Let {xi, yi, zi} be the
vertices of the ith copy of C3 for 0 ≤ i ≤ k − 1 and let {0, 1, ..., n − 1} be
the vertices of K1,n so that the vertex 0 has maximum degree. Define the
permutation

φ(xi) = xi, φ(yi) = yi+1 mod k for all 0 ≤ i ≤ k − 1, and
φ(0) = z0, φ(1) = z1, φ(l) = l for 2 ≤ l ≤ n− 1, and

φ(zk−2) = 0, φ(zk−1) = 1 and φ(zi) = zi+2 mod k otherwise.
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Then it is easy to see that φ is a strong packing.
If k > 4, the graph H2 = H − {3C3} obeys the induction hypothesis;

hence, H2 has a strong packing. And, since 3C3 has a strong packing, we
conclude that H has a strong packing. This completes the analysis for T a
star.

We now turn to the general case in which T is neither K1 nor a star K1,n.
For k > 3, H3 = H−{3C3} satisfies the induction hypothesis; hence H3 has
a strong packing and 3C3 has a strong packing completes the proof that
H has a strong packing. We now deal with the cases k = 2 and 3. Let
x, y ∈ V (T) be two distinct vertices such that at least one of x and y has
degree two and {x, y} 6∈ E(T). Form the graph G1 induced by k C3 ∪ {x, y}
and G2 = T−{x, y}. Then G1 and G2 are (p, p−q) graphs (for some suitable
values of p and q ≥ 2). From Theorem 1.8 we deduce that both have a strong
packing. In fact one can easily see that G1 has a strong packing β such that
β({x, y}) ⊆ V (k C3). From Lemma 3.2 we deduce that the union of these
packings yields a strong packing of G. �

We are now able to present the complete classification of those discon-
nected (n, n− 1) graphs which have a strong packing.

Clearly, if G ∈ F, then G does not have a strong packing. We now suppose
that G 6∈ F and we prove that G has a strong packing. If v is an isolated
vertex of G, then G−{v} is a (n− 1, n− 1) graph. Hence, G−{v} is either
a union of cycles or else it contains a vertex u of degree at least 3. The
former case is covered by Theorem 3.5. In the latter case, G − {u, v} is a
(n−2, n−k) graph with k ≥ 4. Thus, by Remark 2.1, we know that there is
a strong packing φ of G− {u, v}. Defining φ(v) = u and φ(u) = v provides
a strong packing of G.

If G possesses no isolated vertices, then it must have a tree T of order
t ≥ 2 as one of its components (for every cyclic component with n vertices
has at least n edges). Then G − V (T) is a (n − t, n − t) graph. Either
G − V (T) is a disjoint union of cycles or G − V (T) contains a vertex w
whose degree is at least 3. The former alternative, in which G is the union
of a tree and cycles, is covered by Theorem 3.5. In the second alternative,
G − V (T − {w}) is a (n − t − 1, n − t − s) graph with s ≥ 3; hence, there
is a strong packing α of G− V (T− {w}). Also, if z is a vertex of maximal
degree in T, then there is a strong packing β of T−{z}, because T−{z} is
either a (t− 1, t−m) graph with m ≥ 3 or it is K1. By defining

φ(w) = z, φ(z) = w,
φ(x) = α(x) for all x ∈ V (G− V (T− {w})),

φ(y) = β(y) for y ∈ V (T− {z}),

we obtain a strong packing of G. This completes the proof of statement
(ii) of Theorem 1.9.
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4. Proof of Theorem 1.9: connected graphs

4.1. Basic notions. An endpoint of a tree T is a vertex of valence less than
or equal to one. A vertex of T which is not an endpoint is an inner point of
T. That is the tree P1 which consists of exactly one vertex has one endpoint
and no inner points, the tree P2 with two vertices has two endpoints the
path P3 with three points has two endpoints and one inner point and the
path P4 with four vertices has two endpoints and two inner points. Let
V (T) denote the set of vertices of T and e(T) the set of endpoints of T and
i(T) the set of inner points of T.

Then Π(P1) 6= ∅ 6= Π(P2) and Π(P4) 6= ∅ while Π(P3) = ∅. Note that if
σ ∈ Π(T) then σ−1 ∈ Π(T).

Lemma 4.1. For n ≥ 4 and Pn a path of length n, with V (Pn) = {1, 2,
3, . . . , n} and two consecutive numbers adjacent in Pn, there exists a permu-
tation πn ∈ Π(Pn).

Proof. For example, let:

π4 =

(
1 2 3 4
2 4 1 3

)
, π5 =

(
1 2 3 4 5
3 1 5 2 4

)
and

π6 =

(
1 2 3 4 5 6
3 1 5 2 6 4

)
.

In general, permutations πn may be obtained by mapping the first bn/2c
numbers to odd numbers in such a way that the only consecutive numbers
mapped to numbers of different parity are mapped to the largest number
and the smallest number of the other parity. �

It will be notationally convenient for the remainder of this article to de-
mand that a tree has at least two vertices.

Lemma 4.2. If π ∈ Π(T), then π(x) ∈ i(T) for all x ∈ e(T). If Π(T) 6= ∅
then the number of endpoints of T is less than or equal to the number of
inner points of T, that is |e(T)| ≤ |i(T)|.

Proof. For a contradiction let x0, x1 ∈ e(T) with π(x0) = x1. If x0 = x1
then π maps V (T−x0) ∈ C(T) onto V (T−x0) ∈ C(T). Otherwise π maps
V (T− x0) ∈ C(T) onto V (T− x1) ∈ C(T). �

It follows that Π(T) = ∅ if |e(T)| > |i(T)| and that if |e(T)| = |i(T)| and
π ∈ Π(T), then π maps every endpoint of T to an interior point of T and
every interior point of T to an endpoint of T.

We aim to prove the following Theorem:

Theorem 4.3. Let T = (V (T), E(T)) be a tree. Then Π(T) 6= ∅ if and only
if |i(T)| ≥ |e(T)|.
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Let T be the set of trees T for which |i(T)| ≥ |e(T)| and |V (T)| ≥ 4. The
set of trees T with |i(T)| ≥ |e(T)| and |V (T)| ≤ 5 consists of the path on
four vertices and the path on five vertices. It follows from Lemma 4.1 that
Theorem 4.3 holds for all trees T ∈ T with |V (T)| ≤ 5. From Lemma 4.2, it
follows that it suffices to show that Π(T) 6= ∅ for all T ∈ T with |V (T)| ≥ 6.

The proof will be by induction on the number of vertices of T. Let M ⊆ T
consist of all trees T having at least six vertices and Π(T) = ∅ so that if
T′ ∈ T with |V (T′)| < |V (T)| then Π(T′) 6= ∅. We will prove Theorem 4.3
by showing that M = ∅.

4.2. Hanging endpoints. An endpoint of a tree T is a hanging endpoint
of T if it is adjacent to a vertex of valence two. We will show in this section
that a tree in M does not have a hanging endpoint. But first the following:

Lemma 4.4. Let T ∈ T with |i(T)| = |e(T)| and p ∈ V (T) of degree two
so that both neighbours b and c of p are vertices in i(T). Then T 6∈M.

Proof. Assume T ∈ M. Then in particular |V (T)| ≥ 6. Because p is not
adjacent to an endpoint there exists a vertex v adjacent to two different
endpoints. Note that v has valence at least three. Let x be one of the
endpoints adjacent to v. Let the tree T′ be obtained from T by removing
the vertices x and p from T and adding the edge {b, c}. Then v, b, and c
are inner points of T′, |i(T′)| = |e(T′)|, and T′ ∈ T . It follows from the
minimality of M that there is a permutation σ ∈ Π(T′). Then it follows
from Lemma 4.2 that σ maps the vertices b, c, and v to endpoints of T′,
which are not adjacent to p in T because p is only adjacent to inner points.
Let π be the permutation of V (T) which agrees with σ on V (T′) and for
which π(p) = x and π(x) = p. We claim that π ∈ Π(T) and assume for a
contradiction that there is a set A ∈ C(T) with π(A) ∈ C(T).

If {p, x} ∩ A = ∅ then A ∈ C(T′) and σ(A) ∈ C(T′). If p ∈ A and
x 6∈ A then A \ {p} is connected in T′ and so is π(A) \ {x} because x
is an endpoint. It follows then from π(A \ {p}) = σ(A \ {p}) that either
A \ {p} = V (T′), in which case π(A) = T \ {p} is not connected, or that
|A \ {p}| = 1. Then A = {p, b} or A = {p, c}. But then π(A) = {x, π(b)}
or π(A) = {x, π(c)} are sets of two endpoints and hence not connected. If
x ∈ A and p 6∈ A then A \ {x} is connected in T′ and so is π(A) \ {p}. It
follows then from π(A \ {x}) = σ(A \ {x}) that either A \ {x} = V (T′), in
which case A = V (T) \ {p} is not connected, or that |A \ {x}| = 1. Then
A = {v, x} and then π(A) = {p, π(v)} is not connected because v ∈ i(T′)
and hence π(v) = σ(v) is an endpoint and therefore not adjacent to p.

If {p, x} ⊆ A then B = A \ {p, x} is connected in T′ and so is π(B) =
π(A) \ {p, x}. Hence B = V (T′) or |B| ≤ 1. If B = V (T′) then A = V (T).
Because {p, x} is not connected we have |B| = 1, say B = y. Then A =
{p, x, y} implying y ∈ i(T) because p and x are not adjacent and hence y
is adjacent to both p and x. But then π(A) = {p, x, σ(y)} is not connected
because x and σ(y) are two endpoints not adjacent to p. �
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Lemma 4.5. Let T ∈ T and e ∈ e(T) be a hanging endpoint of T. Then
T 6∈M.

Proof. Assume T ∈ M. Then in particular |V (T)| ≥ 6. Let e be adjacent
to the vertex i which in turn is adjacent to the vertex c 6= e. Let T′ be
the tree obtained from T by removing the vertices e and i. It follows from
Lemma 4.4 and |V (T )| ≥ 6 that if |i(T)| = |e(T)| then the valence of c is
larger than two. Hence T′ ∈ T and there exists a permutation σ ∈ Π(T′).
Let w = σ−1(c), that is σ(w) = c and w 6= c because σ is fixed point free.

Let D = V (T)\{w, i, e} and π the permutation of V (T) which agrees with
σ on D and for which π(w) = i, π(i) = e, and π(e) = c. Then π is fixed point
free and we will show that π ∈ Π(T). Assume for a contradiction that there
exists a set A ∈ C(T) for which π(A) is connected. Let B = A− {w, i, e}.

If B = ∅ then A = {i, e} and π(A) = {e, c} which is not connected. Hence
B 6= ∅. Because π restricted to B is equal to σ restricted to B it follows
that A 6= B and hence {w, i, e} ∩A 6= ∅.

Suppose next that i ∈ A. Then w ∈ A for otherwise e is an isolated point
of π(A). Hence all points on the path from w to i and in particular c, are in A
implying |A| ≥ 3 and in turn that |π(A)| ≥ 3. It follows then from e ∈ π(A)
that c ∈ π(A) implying that e ∈ A. We conclude that {w, i, e} ⊂ A and
{i, e, c} ⊂ π(A). Note that A\{i, e} = B∪{w} and π(A)\{i, e} = π(B)∪{c}
are connected because e is an endpoint and i is an endpoint after removing
e.

But then σ(B ∪{w}) = σ(B)∪{c} = π(B)∪{c} provides a contradiction
because |B ∪ {w}| ≥ 2 and if B ∪ {w} = V (T′) then A = V (T) 6∈ C(T).

Hence we are left with the case that i 6∈ A. Then e 6∈ A implying A =
B∪{w}. Because e 6∈ A the point c is not in π(A) leading to the contradiction
that i is an isolated point of the connected set π(A). �

Lemma 4.6. If T ∈M then |V (T)| ≥ 8.

Proof. We are left with the cases |V (T)| is equal to six or seven. We will
show that if 7 ≤ |V (T)| < 8 then T has a hanging endpoint and hence
according to Lemma 4.5 is not in M.

Note that T can not have more than three endpoints. The set X of
inner points of T is connected and hence a tree with at least two different
endpoints, say x and y. If an endpoint e adjacent to x is not hanging then
there is another endpoint of T also adjacent to x and similarly for y. This
is not possible because T has at most three endpoints. �

4.3. No hanging endpoints. Let P = (P,≤) be a partial order. For
x, y ∈ P the point x covers the point y if y < x and y ≤ z ≤ x implies y = z
or z = x. The cover graph of P is the graph with P as the set of vertices
and x adjacent to y if x covers y or y covers x.

Let T = (V (T), E(T)) be a tree and r ∈ i(T). We define a binary relation
≤ on V (T) as follows: if u, v ∈ V (T), then u ≤ v if and only if the unique
path in T joining r to v contains u. It turns out that ≤ is an order relation
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on V (T). We denote by T〈r〉 = (V (T),≤) the corresponding ordered set.
Then r is the smallest element of T〈r〉, the set e(T) is the set of maximal
elements of T〈r〉, and the elements below every element of V (T) are totally
ordered.

Removing any element from T〈r〉 \ {r} leaves a connected ordered set
whose covering graph is a tree. Hence if X ⊆ T〈r〉 \{r} then the cover graph
T′ of T〈r〉 \X is connected and indeed a tree.

Remark 4.7. Let r 6∈ B ⊆ V (T) and T′ the cover graph of T〈r〉 \B. Then
if u, v are two vertices in a connected component of T−B the vertices u and
v are adjacent in T if and only if the vertices u and v are adjacent in T′.
Hence if A is a connected subset of T−B then it is in one of the connected
components of T−B and hence it is a connected subset of T′.

Lemma 4.8. Let A ⊆ V (T) be connected in T and B ⊆ A and r ∈ (A \
B) ∩ i(T). Then A \B is connected in the covering graph T′ of T〈r〉 \B.

Proof. If A\B is not connected in T′ then there are two vertices a, b ∈ A\B
having minimal distance in T and so that if a = x0, x1, . . . , xn = b is the
path from a to b at least one of the vertices in X := {x1, x2, . . . , xn−2, xn−1}
is an element of B. It follows from the minimality of n, the distance from
a to b, that X ⊆ B. If a < b or b < a in T〈r〉 then a is adjacent to b in
T〈r〉 \B. Otherwise r < a and r < b with r ∈ A \B, implying that there is
a vertex c ∈ A \B so that c < a, c < b, and c is adjacent both to a and to b
in T〈r〉 \B. �

Lemma 4.9. Let T ∈ T and let e1, e2 ∈ e(T) being adjacent to the vertices
i1 and i2 respectively having distance between i1 and i2 at least two. Then
T 6∈M.

Proof. Let T ∈M and r a vertex on the path from i1 to i2 so that i1 6= r 6= i2
and cj 6= ej the points adjacent to ij . Let T′ be the covering graph of
Tr \ {e1, e2, i1, i2}. Lemma 4.6 implies |V (T′)| ≥ 4. Because T ∈ M the
tree T has no hanging endpoints according to Lemma 4.5, implying that
the vertices i1 and i2 have valence at least three. This fact ensures that
|i(T′)| ≥ |e(T′)| and therefore T′ ∈ T . Because of the minimality of M
there exists a permutation σ ∈ Π(T′).

We define a permutation π of V (T) to V (T) as follows:

π(e1) = i1, π(i1) = e2, π(e2) = i2, π(i2) = e1, and
π(v) = σ(v) for all v ∈ V (T) \ {e1, e2, i1, i2}.

Clearly π has no fixed points. We now prove that π ∈ Π(T). Let A ∈ C(T)
and suppose for a contradiction that π(A) ∈ C(T). Then A∩{e1, e2, i1, i2} 6=
∅, because otherwise A and π(A) = σ(A) are connected subsets of T′ accord-
ing to Remark 4.7 and hence A = V (T′). But V (T′) = V (T) \ {e1, e2, i1, i2}
is not connected in T because i1 has valence at least three. But then at least
one of i1 or i2 is in A because the endpoints e1 and e2 would be isolated
without i1 or i2 in A. Assume without loss of generality that i1 ∈ A.
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Then e2 ∈ π(A) and hence i2 ∈ π(A), otherwise e2 is isolated, implying
e2 ∈ A which in turn implies that i2 ∈ A. That is in all cases {e1, i1, e2, i2} ⊆
A ∩ π(A). This implies that the path from i1 to i2 and hence r is in A \ B
and in π(A)\B. Then Lemma 4.8 implies that A\B and π(A)\B are both
connected in T′.

It follows that A \ B is either empty, a singleton, or V (T′). This latter
case is not possible since by assumption we have A 6= V (T). The case A = B
is also not possible because B is not a connected subset of T. So we are
left with the case A \ B is a singleton, say A = B ∪ {x}. Then both x and
π(x) = σ(x) are neighbours of i1 and i2 in T and therefore π(x) = σ(x) = x
contradicting our assumption that σ has no fixed points. �

4.4. Proof of Theorem 4.3.

Lemma 4.10. Every tree T ∈ T has at least two endpoints e1 and e2,
adjacent to vertices i1 and i2 respectively, whose distance is at least two.

Proof. Let X be the set of vertices in T adjacent to endpoints of T. If there
are no two vertices in X of distance two then any two vertices in X are
adjacent, implying |X| = 2. Let X = {i1, i2}. If T is not the path on four
vertices then at least one of i1 or i2 is adjacent to an inner point, say a. It
follows that the tree T has to have an endpoint not adjacent to i1 or i2 in
contradiction to the choice of X. �

We now turn to the proof of Theorem 4.3

Proof. It follows from Lemma 4.2 that if |i(T)| < |e(T)| then Π(T) = ∅.
If there is a tree S with |i(S)| ≥ |e(S)| and Π(S) = ∅ then there is a tree

T ∈M. It follows from Lemma 4.10 that T contains two endpoints adjacent
to vertices of distance at least two. But then we arrive at a contradiction to
Lemma 4.9. �
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11. W. Imrich, S. Klavžar, and V. Trofimov, Distinguishing infinite graphs, Electron. J.
Combin. 14 (2007), #R36.
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21. A. Żak, Near packing of graphs, Electron. J. Combin. 20 (2013), no. 2, #P36.

Department of Mathematics and Statistics,
University of Calgary, Calgary, T2N 1N4, Alberta, Canada

E-mail address: nsauer@math.ucalgary.ca

Department of Mathematics and Computer Science
Royal Military College of Canada

P.O.Box 17000, Station Forces,
K7K 7B4 Kingston, Ontario, Canada

E-mail address: imed.zaguia@rmc.ca


