Volume 20, Number 2, Pages 30–42 ISSN 1715-0868

ON A CONSTRUCTION OF SELF-ORTHOGONAL CODES FROM ORBIT MATRICES OF 2-DESIGNS

MARIJA MAKSIMOVIĆ AND SANJA RUKAVINA

ABSTRACT. In 2003, Harada and Tonchev presented a construction of self-orthogonal codes from orbit matrices of symmetric 2-designs with fixed point free automorphisms. Since then, the constructions of self-orthogonal codes from orbit matrices of 2-designs has been extensively studied. In this paper, we present new constructions of self-orthogonal codes from orbit matrices of 2-designs for the cases not covered by the previously described methods. We construct self-orthogonal codes from orbit matrices of 2-(1024, 496, 249) and 2-(45, 5, 1) designs. Some of the constructed codes are optimal.

1. Introduction and preliminaries

In [12], Harada and Tonchev presented a construction of self-orthogonal codes from orbit matrices of symmetric 2-designs with fixed point free automorphisms. Since then, the constructions of self-orthogonal codes from orbit matrices of incidence structures, in particular designs, has been extensively studied ([5], [7], [8], [9]). In this paper, we present new methods for a construction of self-orthogonal codes from orbit matrices of 2-designs for the cases not covered by the previously described methods. As a demonstration of the constructions presented, we construct self-orthogonal codes from 2-(45,5,1) and 2-(1024,496,249) designs.

We assume that the reader is familiar with the basic terminology from design theory and coding theory. For background information, we refer the reader to [1] and [16].

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$, with point set \mathcal{P} , block set \mathcal{B} and incidence relation $I \subseteq \mathcal{P} \times \mathcal{B}$, where $|\mathcal{P}| = v$, $|\mathcal{B}| = b$, each block $B \in \mathcal{B}$ is incident with exactly k points, every pair of distinct points from \mathcal{P} is incident with exactly λ blocks and each point is incident with exactly r blocks is a

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors September 16, 2022, and in revised form August 9, 2023. 2000 Mathematics Subject Classification. 05B05, 94B05, 20D45.

Key words and phrases. 2-designs, self-orthogonal codes, orbit matrices of 2-designs. The authors would like to thank the anonymous referee for valuable comments that

 $2\text{-}(v, b, r, k, \lambda)$ design or a $2\text{-}(v, k, \lambda)$ design. An automorphism group of the design \mathcal{D} , in the notation Aut(D), is the group $G = \{g \in Sym(\mathcal{P}) : \mathcal{B}^g = \mathcal{B}\}$.

A linear q-ary [n,k] code C over the finite field \mathbb{F}_q of prime-power order q is a k-dimensional subspace of the n-dimensional vector space over \mathbb{F}_q . The weight of a codeword is the number of its elements that are nonzero and the distance between two codewords is the *Hamming distance* between them, i.e., the number of elements in which they differ. The minimum distance between different codewords is denoted by d. The minimum distance of a linear code is the minimum weight of its nonzero codewords. If a linear code C over a field of order q has length n, dimension k, and minimum distance d=d(C), then we write $[n,k,d]_q$ to show this information. For a linear $[n,k,d]_q$ code C it holds that $k \leq n-d+1$ (Singleton bound), and C is called optimal $[n,k]_q$ code if its minimum weight d achieves the Singleton bound for the minimum weight of $[n, k]_q$ linear codes, i.e., if d = n - k + 1. A linear code is near-optimal if its minimum distance is at most 1 less than the largest possible value given by the Singleton bound. The dual code C^{\perp} is the orthogonal complement under the standard inner product (\cdot,\cdot) , i.e. $C^{\perp} = \{v \in F^n | (v,c) = 0 \text{ for all } c \in C\}.$ If $C \subset C^{\perp}$, then C is called self-orthogonal.

We use GAP [11] for all computations in this paper involving the construction of codes from orbit matrices of the design. The obtained codes were analyzed using Magma [2].

2. Orbit matrices of 2-designs

For the construction of self-orthogonal codes we use point orbit matrices of 2-designs introduced in [5].

Definition 2.1. An $m \times n$ matrix $O = (o_{ij})$ is called a point orbit matrix for parameters (v, b, r, k, λ) and orbit length distributions (ν_1, \ldots, ν_m) and $(\beta_1, \ldots, \beta_n)$ if the entries of O satisfy the conditions:

$$0 \le o_{ij} \le \beta_j, 1 \le i \le m, 1 \le j \le n,$$

$$\sum_{j=1}^n o_{ij} = r, 1 \le i \le m,$$

$$\sum_{i=1}^m \frac{\nu_i}{\beta_j} o_{ij} = k, 1 \le j \le n,$$

(2.1)
$$\sum_{j=1}^{n} \frac{\nu_t}{\beta_j} o_{sj} o_{tj} = \lambda \nu_t + \delta_{st}(r - \lambda), 1 \le s, t \le m,$$

$$where \sum_{i=1}^{m} \nu_i = v, \sum_{j=1}^{n} \beta_j = b, b = \frac{vr}{k}.$$

The submatrix of an orbit matrix corresponding to orbits of size 1 is called the *fixed part of the orbit matrix*, while the submatrix whose rows or columns correspond to orbits of length greater than 1 is called the *nonfixed part of the orbit matrix*.

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be $2\text{-}(v, b, r, k, \lambda)$ design and let G be an automorphism group of \mathcal{D} acting on the set of points with m point orbits denoted by $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_m$, and on the set of blocks with n block orbits denoted by $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n$, where $|\mathcal{P}_i| = \nu_i, 1 \leq i \leq m$, and $|\mathcal{B}_j| = \beta_j, 1 \leq j \leq n$. Further, let $\{w_i | 0 \leq i \leq d\}$ be the set of lengths of point and block orbits for G acting on \mathcal{D} , where $w_i < w_j$, for i < j. Then $m = \sum_{i=0}^d m_i$ and $n = \sum_{i=0}^d n_i$, where m_i (resp. n_i) is the number of point (resp. block) orbits of length $w_i, i \in \{0, 1, 2, \ldots, d\}$. Let N_j (resp. M_j) be the number of block (resp. point) orbits with size smaller than w_j , that is:

$$N_j = \begin{cases} 0, & j = 0 \\ \sum_{i < j} n_i, & j \in \{1, \dots, d+1\} \end{cases}, \quad M_j = \begin{cases} 0, & j = 0 \\ \sum_{i < j} m_i, & j \in \{1, \dots, d+1\} \end{cases}.$$

It follows:

$$\beta_i = w_j, \quad 1 + N_j \le i \le N_{j+1}, j \in \{0, \dots, d\},\ \nu_i = w_i, \quad 1 + M_j \le i \le M_{j+1}, j \in \{0, \dots, d\}.$$

Denote by o_{ij} the number of blocks of \mathcal{B}_j incident with a representative of the point orbit \mathcal{P}_i and denote by γ_{ij} the number of points of \mathcal{P}_i incident with a representative of the block orbit \mathcal{B}_j . Then it follows

$$(2.2) \gamma_{ij} \cdot \beta_j = o_{ij} \cdot \nu_i.$$

We call the matrix $O=(o_{ij})$ the point-block orbit matrix, while the matrix $\Gamma=(\gamma_{ij})$ is the block-point orbit matrix of \mathcal{D} for the action of the group G. Note that the matrix O is a point orbit matrix for the parameters (v, b, r, k, λ) and the orbit length distributions (ν_1, \ldots, ν_m) and $(\beta_1, \ldots, \beta_n)$. On the other hand, the orbit matrices from Definition 2.1 need not be orbit matrices corresponding to any 2-design.

3. Self-orthogonal codes from orbit matrices of 2-designs

In [5] and [8], constructions of self-orthogonal codes from orbit matrices, and fixed and nonfixed parts of orbit matrices of 2-designs admitting an automorphism group G acting on the set of points and the set of blocks with two orbit lengths, 1 and w, are presented. In this section we present methods for a construction of self-orthogonal codes from point-block orbit matrices of 2-designs, where the lengths of the orbits are not restricted to 1 and w. We use the notation introduced in the previous section and all orbit matrices of designs are point-block orbit matrices.

In the next theorem we study the conditions under which a self-orthogonal code can be constructed from the fixed part of the orbit matrix for an automorphism group $G \leq Aut(D)$ of the 2-design \mathcal{D} .

Theorem 3.1. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, b, r, k, λ) design with an automorphism group G and let O be the corresponding orbit matrix. If $w_0 = 1$ and a prime p divides r, λ and w_h , for all $h \in \{1, 2, \ldots, d\}$ such that $n_h \neq 0$, then the rows of the fixed part of O span a self-orthogonal code of length n_0 over \mathbb{F}_q , where $q = p^c$.

Proof. The fixed part of the orbit matrix $O = (o_{ij})$ is shown in Figure 1.

O		n_0			n_1				n_2		 n_d			
		1	1		1	w_1		w_1	w_2		w_2	 w_d		w_d
	1													
m_0	:													
	1													
	w_1													
m_1	:													
	w_1													
:	:													
	w_d													
m_d	:													
	w_d													

Figure 1. The fixed part of an orbit matrix

Let $\nu_s = \nu_t = 1$, where $1 \le s \le t \le M_1 = m_0$. Then

$$\sum_{j=1}^{n} \frac{\nu_{t}}{\beta_{j}} o_{sj} o_{tj} = \sum_{\substack{h=0\\n_{h} \neq 0}}^{d} \left(\sum_{j=1+N_{h}}^{N_{h+1}} \frac{1}{w_{h}} o_{sj} o_{tj} \right) = \sum_{j=1}^{n_{0}} o_{sj} o_{tj} + \sum_{\substack{h=1\\n_{h} \neq 0}}^{d} \left(\sum_{j=1+N_{h}}^{N_{h+1}} \frac{1}{w_{h}} o_{sj} o_{tj} \right),$$

and, using (2.1), it follows

$$\sum_{j=1}^{n_0} o_{sj} o_{tj} = \lambda + \delta_{st}(r - \lambda) - \sum_{\substack{h=1\\n_b \neq 0}}^{d} \sum_{j=1+N_h}^{N_{h+1}} \frac{1}{w_h} o_{sj} o_{tj}.$$

Since a point from an orbit of size 1 is incident with none or with all blocks from some block orbit, it follows that $o_{sj} \in \{0, w_h\}$, that is, $o_{sj}o_{tj} \in \{0, w_h^2\}$, for $1 + N_h \le j \le N_{h+1}$ such that $n_h \ne 0$.

Thus, we have

$$\sum_{j=1}^{n_0} o_{sj} o_{tj} = \lambda + \delta_{st}(r - \lambda) - \sum_{\substack{h=1\\n_h \neq 0}}^{d} w_h z_h,$$

where $z_h = |\{j : o_{sj}o_{tj} = w_h^2\}|$. It follows that the fixed part of the matrix O generates a self-orthogonal code of length n_0 over \mathbb{F}_q , where $q = p^c$. \square

In the next example, we apply Theorem 3.1 to construct self-orthogonal codes from the fixed part of orbit matrices of a 2-(1024, 496, 240) design.

Example 3.2. The symmetric 2-(1024, 496, 240) design available at [17] (see also [3]) belongs to the family of Cantor designs. The full automorphism group of this design has order $2^{35} \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17 \cdot 31 = 25410822678459187200$, it is isomorphic to the group $E_{1024}: O(11,2)$ and it has 73 conjugacy classes of subgroups isomorphic to Z_4 . Among them, only a few have fixed orbits and the corresponding orbit length distributions are given in the first column of Table 1, where d_i denotes the number of block orbits of length i, for $i \in \{1,2,4\}$. So, r = 496, $\lambda = 240$ and the orbit lengths are 1, 2 or 4. Note that since in addition to the fixed part, there are also parts corresponding to orbits of length 2 and 4, methods described in [5] and [8] can not be applied. However, the conditions of Theorem 3.1 are satisfied for p = 2 and from the fixed part of the corresponding orbit matrices we have constructed self-orthogonal binary codes as presented in Table 1. Optimal codes are denoted by *, and near-optimal codes are denoted by **.

Table 1. Self-orthogonal codes from the fixed part of the orbit matrices for Z_4 acting on a 2-(1024, 496, 240) design

(d_1,d_2,d_4)	C	$ \mathrm{Aut}(C) $	Weight Distribution
(8, 28, 240)	$[8, 2, 4]^{**}$	$2^7 \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 4, 2 \rangle, \langle 8, 1 \rangle]$
(16, 120, 192)	[16, 2, 8]	$2^{15} \cdot 3^4 \cdot 5^2 \cdot 7^2$	$[\langle 0, 1 \rangle, \langle 8, 2 \rangle, \langle 16, 1 \rangle]$
(16, 24, 240)	[16, 4, 4]	$2^{15} \cdot 3^5$	$[\langle 0, 1 \rangle, \langle 4, 4 \rangle, \langle 8, 6 \rangle, \langle 12, 4 \rangle, \langle 16, 1 \rangle]$
(32, 112, 190)	[32, 4, 8]	$2^{31} \cdot 3^9 \cdot 5^4 \cdot 7^4$	$[\langle 0, 1 \rangle, \langle 8, 4 \rangle, \langle 16, 6 \rangle, \langle 24, 4 \rangle, \langle 32, 1 \rangle]$
(32, 112, 190)	$[32, 4, 16]^*$	$2^{30} \cdot 3^9 \cdot 7$	$[\langle 0, 1 \rangle, \langle 16, 14 \rangle, \langle 32, 1 \rangle]$
(64, 96, 192)	[64, 6, 24]	$2^{56} \cdot 3^{18} \cdot 5$	$[\langle 0, 1 \rangle, \langle 24, 16 \rangle, \langle 32, 30 \rangle, \langle 40, 16 \rangle, \langle 64, 1 \rangle]$
(64, 96, 192)	$[64, 6, 32]^*$	$2^{47} \cdot 3^2 \cdot 5 \cdot 7 \cdot 31$	$[\langle 0, 1 \rangle, \langle 32, 62 \rangle, \langle 64, 1 \rangle]$
(128, 64, 192)	[128, 8, 56]	$2^{79} \cdot 3^4 \cdot 5 \cdot 7$	$[\langle 0, 1 \rangle, \langle 56, 64 \rangle, \langle 64, 126 \rangle, \langle 72, 64 \rangle, \langle 128, 1 \rangle]$

Using Theorem 3.1 we obtain the following statement.

Corollary 3.3. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, k, λ) design with an automorphism group G and let O be the corresponding orbit matrix. If $w_0 = 1$ and a prime p divides r, λ and w_h , for all $h \in \{1, 2, ..., d\}$ such that $n_h \neq 0$, then the code spanned by the rows of O corresponding to orbits of length w_0 is a self-orthogonal code of length n over \mathbb{F}_q , where $q = p^c$.

Proof. Let $\nu_s = \nu_t = w_0 = 1$, where $1 \le s \le t \le M_1$ (Figure 2), and $O = (o_{ij})$.

0			n_0			n_1			n_2				n_d	
		1		1	w_1		w_1	w_2		w_2		w_d		w_d
	1													
m_0	:													
	1													
	w_1													
m_1	:													
	w_1													
	w_2													
m_2	:													
	w_2													
÷	:										٠			
	w_d													
m_d	:													
	w_d													

FIGURE 2. A submatrix of the orbit matrix O related to the Corollary 3.3

Then

$$\sum_{j=1}^{n} o_{sj} o_{tj} = \sum_{\substack{h=0\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj} \right) = \sum_{j=1+N_0}^{N_1} o_{sj} o_{tj} + \sum_{\substack{h=1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj} \right)$$

From (2.2), we get

$$\sum_{j=1}^{n} o_{sj} o_{tj} = \sum_{j=1}^{N_1} o_{sj} o_{tj} + \sum_{\substack{h=1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \frac{\beta_j}{\nu_s} \gamma_{tj} \frac{\beta_j}{\nu_t} \right)$$

$$= \sum_{j=1}^{N_1} o_{sj} o_{tj} + \sum_{\substack{h=1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \frac{w_h}{w_0} \gamma_{tj} \frac{w_h}{w_0} \right)$$

$$= \sum_{j=1}^{N_1} o_{sj} o_{tj} + \sum_{\substack{h=1\\n_h \neq 0}}^{d} (pb_h)^2 \sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \gamma_{tj},$$

where $pb_h = w_h$ when $h \in \{1, ..., d\}$ and $n_h \neq 0$.

Since p divides r, λ and w_h , for all $h \in \{1, 2, ..., d\}$ such that $n_h \neq 0$ it follows from Theorem 3.1 that $\sum_{j=1}^{N_1} o_{sj} o_{tj} \equiv 0 \pmod{p}$. Thus, the

linear code spanned by the rows corresponding to orbits of length 1 is a self-orthogonal code of length n over \mathbb{F}_q , where $q = p^c$.

Theorem 3.1 gives us the conditions under which a self-orthogonal code can be constructed from a fixed part of an orbit matrix. The next theorem gives the construction of a self-orthogonal code also from the other submatrices of an orbit matrix, but some additional properties are required.

Theorem 3.4. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, k, λ) design with an automorphism group G and let O be the corresponding orbit matrix such that $pw_h|w_\ell$ for $h < \ell$ ($pw_\ell|w_h$ for $h > \ell$), where $n_h \neq 0$ and $0 \leq \ell \leq d$. If a prime p divides $r - \lambda$ then the code spanned by the rows of the submatrix of O corresponding to orbits of length w_ℓ is a self-orthogonal code of length n_ℓ over \mathbb{F}_q , where $q = p^c$.

Proof. Let $\nu_s = \nu_t = w_\ell$, where $1 + M_\ell \le s \le t \le M_{\ell+1}$ (Figure 3), and $O = (o_{ij})$.

O			n_0			n_1				n_{ℓ}				n_d	
		w_0		w_0	w_1		w_1		w_{ℓ}		w_{ℓ}		w_d		w_d
	w_0														
m_0	:														
	w_0														
	w_1														
m_1	:														
	w_1														
÷	:							٠.							
	w_{ℓ}														
m_ℓ	:														
	w_{ℓ}														
:	:											٠.			
	w_d														
m_d	÷														
	w_d														

FIGURE 3. Submatrices of the orbit matrix O related to the Theorem 3.4

Then

$$\begin{split} \sum_{j=1}^{n} \frac{\nu_{t}}{\beta_{j}} o_{sj} o_{tj} &= \sum_{\substack{h=0\\n_{h} \neq 0}}^{d} \left(\sum_{j=1+N_{h}}^{N_{h+1}} \frac{w_{\ell}}{w_{h}} o_{sj} o_{tj} \right) \\ &= \sum_{\substack{h=0\\n_{h} \neq 0}}^{\ell-1} \left(\sum_{j=1+N_{h}}^{N_{h+1}} \frac{w_{\ell}}{w_{h}} o_{sj} o_{tj} \right) + \sum_{j=1+N_{\ell}}^{N_{\ell+1}} \frac{w_{\ell}}{w_{\ell}} o_{sj} o_{tj} \\ &+ \sum_{\substack{h=\ell+1\\n_{h} \neq 0}}^{d} \left(\sum_{j=1+N_{h}}^{N_{h+1}} \frac{w_{\ell}}{w_{h}} o_{sj} o_{tj} \right). \end{split}$$

From (2.1) follows

$$\sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} = \lambda w_{\ell} + \delta_{st} (r - \lambda) - \sum_{\substack{h=0\\n_h \neq 0}}^{\ell-1} \left(\sum_{j=1+N_h}^{N_{h+1}} \frac{w_{\ell}}{w_h} o_{sj} o_{tj} \right)$$
$$- \sum_{\substack{h=\ell+1\\n_i \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} \frac{w_{\ell}}{w_h} o_{sj} o_{tj} \right).$$

From (2.2) and $pw_h|w_\ell$ for all $h \in \{0, \dots, \ell-1\}$ such that $n_h \neq 0$, we get

$$\sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} = \lambda w_{\ell} + \delta_{st}(r-\lambda) - \sum_{\substack{h=0\\n_h \neq 0}}^{\ell-1} pc_h \sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj}$$
$$- \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} \sum_{j=1+N_h}^{N_{h+1}} \frac{w_{\ell}}{w_h} \gamma_{sj} \frac{w_h}{w_{\ell}} \gamma_{tj} \frac{w_h}{w_{\ell}},$$

where $pc_h = \frac{w_\ell}{w_h}$ when $0 \le h < \ell$ and $n_h \ne 0$. Since $pw_\ell | w_h$ for all $h \in \{\ell+1,\ldots,d\}$ such that $n_h \ne 0$, it holds

$$\sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} = \lambda w_{\ell} + \delta_{st}(r-\lambda) - \sum_{\substack{h=0\\n_h \neq 0}}^{\ell-1} pc_h \sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj}$$
$$- \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} pb_h \sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \gamma_{tj},$$

where $pb_h = \frac{w_h}{w_\ell}$ when $h \in \{\ell + 1, \dots, d\}$ and $n_h \neq 0$.

Further, since p divides w_{ℓ} and $r - \lambda$, it follows that $\sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} \equiv 0 \pmod{p}$. Thus, the linear code spanned by the rows corresponding to orbits of length w_{ℓ} is a self-orthogonal code of length $N_{\ell+1} - N_{\ell} = n_{\ell}$ over \mathbb{F}_q , where $q = p^c$.

In the next example, we use Theorem 3.4 to construct self-orthogonal codes from submatrices of orbit matrices of Steiner 2-(45,5,1) designs.

Example 3.5. Recently, the existence of 35 new 2-(45, 5, 1) designs has been established in [10]. Incidence matrices of 30 previously known 2-(45, 5, 1) designs are available at [14] (see also [4], [6], [13], [15]). We used the orbit matrices of all known 2-(45, 5, 1) designs that can be obtained for an action of a group of order 4. From these we constructed self-orthogonal binary codes. Since p = 2, $r - \lambda = 10$, and the orbit lengths can be 1, 2 or 4, the conditions of Theorem 3.4 are satisfied.

In Tables 2 and 3, we present self-orthogonal binary codes from orbits of length 4 from orbit matrices for the action of group Z_4 and E_4 , respectively. In the first column of the table, the corresponding distributions of orbit lengths are given, where d_i denotes the number of block orbits of length i, for $i \in \{1, 2, 4\}$. As in the previous example, in these orbit matrices, in addition to the part corresponding to orbits of length 4, there is also a part corresponding to orbits of length 1 and 2, so we can not obtain these results with the constructions known so far. Optimal codes are denoted by *, and near-optimal codes are denoted by **.

Table 2. Codes from the parts corresponding to the orbits of length 4 from the orbit matrices for \mathbb{Z}_4 acting on 2-(45, 5, 1) designs

(d_1,d_2,d_4)	C	$ \mathrm{Aut}(C) $	Weight Distribution
(3, 8, 20)	$[20, 5, 8]^{**}$	2^{12}	$[\langle 0, 1 \rangle, \langle 8, 14 \rangle, \langle 12, 16 \rangle, \langle 16, 1 \rangle]$
(3, 8, 20)	$[20, 6, 8]^*$	2^{9}	$[\langle 0, 1 \rangle, \langle 8, 32 \rangle, \langle 12, 28 \rangle, \langle 16, 3 \rangle]$
(3, 4, 22)	[22, 6, 6]	2^{4}	$[\langle 0, 1 \rangle, \langle 6, 1 \rangle, \langle 8, 9 \rangle, \langle 10, 19 \rangle, \langle 12, 22 \rangle,$
			$\langle 14, 11 \rangle, \langle 18, 1 \rangle$
(3,4,22)	[22, 7, 4]	2^{4}	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 6, 1 \rangle, \langle 8, 19 \rangle, \langle 10, 39 \rangle,$
			$\langle 12, 43 \rangle, \langle 14, 23 \rangle, \langle 18, 1 \rangle$
(3,4,22)	[22, 7, 4]	2^{5}	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 6, 1 \rangle, \langle 8, 23 \rangle, \langle 10, 39 \rangle,$
			$\langle 12, 35 \rangle, \langle 14, 23 \rangle, \langle 16, 4 \rangle, \langle 18, 1 \rangle$
(3,4,22)	[22, 7, 4]	2^{6}	$[\langle 0, 1 \rangle, \langle 4, 2 \rangle, \langle 8, 18 \rangle, \langle 10, 40 \rangle,$
			$\langle 12, 42 \rangle, \langle 14, 24 \rangle, \langle 16, 1 \rangle$
(3,4,22)	[22, 7, 4]	2^{6}	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 6, 3 \rangle, \langle 8, 21 \rangle, \langle 10, 35 \rangle,$
			$\langle 12, 39 \rangle, \langle 14, 25 \rangle, \langle 16, 2 \rangle, \langle 18, 1 \rangle$
(3,4,22)	[22, 7, 4]	2^{8}	$[\langle 0,1\rangle,\langle 4,2\rangle,\langle 6,2\rangle,\langle 8,18\rangle,\langle 10,38\rangle,$
			$\langle 12, 42 \rangle, \langle 14, 22 \rangle, \langle 16, 1 \rangle, \langle 18, 2 \rangle$
(1, 5, 22)	[22, 8, 4]	$2^4 \cdot 3$	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 8, 75 \rangle, \langle 12, 163 \rangle, \langle 16, 16 \rangle]$
(1, 5, 22)	[22, 8, 4]	2^{9}	$\left[\langle 0, 1 \rangle, \langle 4, 2 \rangle, \langle 8, 76 \rangle, \langle 12, 158 \rangle, \langle 16, 19 \rangle \right]$
(3,4,22)	[22, 8, 4]	2^{9}	$[\langle 0, 1 \rangle, \langle 4, 4 \rangle, \langle 6, 2 \rangle, \langle 8, 46 \rangle, \langle 10, 78 \rangle,$
			$\langle 12, 68 \rangle, \langle 14, 46 \rangle, \langle 16, 9 \rangle, \langle 18, 2 \rangle]$
(3,4,22)	[22, 8, 4]	2^{10}	$[\langle 0, 1 \rangle, \langle 4, 4 \rangle, \langle 6, 4 \rangle, \langle 8, 42 \rangle, \langle 10, 76 \rangle,$
			$\langle 12, 76 \rangle, \langle 14, 44 \rangle, \langle 16, 5 \rangle, \langle 18, 4 \rangle]$
(3, 4, 22)	[22, 8, 6]	4	$[\langle 0, 1 \rangle, \langle 6, 8 \rangle, \langle 8, 38 \rangle, \langle 10, 80 \rangle, \langle 12, 80 \rangle,$
			$\langle 14, 40 \rangle, \langle 16, 9 \rangle$
(3,4,22)	[22, 8, 6]	4	$[\langle 0, 1 \rangle, \langle 6, 10 \rangle, \langle 8, 36 \rangle, \langle 10, 76 \rangle, \langle 12, 84 \rangle,$
		,	$\langle 14, 42 \rangle, \langle 16, 7 \rangle$
(3, 4, 22)	[22, 8, 6]	2^{6}	$[\langle 0, 1 \rangle, \langle 6, 8 \rangle, \langle 8, 42 \rangle, \langle 10, 80 \rangle, \langle 12, 72 \rangle,$
		4	$\langle 14, 40 \rangle, \langle 16, 13 \rangle]$
(1, 5, 22)	$[22, 8, 8]^*$	24	$[\langle 0, 1 \rangle, \langle 8, 78 \rangle, \langle 12, 160 \rangle, \langle 16, 17 \rangle]$
(1, 5, 22)	$[22, 8, 8]^*$	$2^{6} \cdot 3$	$[\langle 0, 1 \rangle, \langle 8, 86 \rangle, \langle 12, 144 \rangle, \langle 16, 25 \rangle]$
(1, 5, 22)	$[22, 8, 8]^*$	$2^{11} \cdot 3$	$[\langle 0, 1 \rangle, \langle 8, 90 \rangle, \langle 12, 136 \rangle, \langle 16, 29 \rangle]$
(3,4,22)	[22, 10, 4]	2^{12}	$[\langle 0, 1 \rangle, \langle 4, 4 \rangle, \langle 6, 32 \rangle, \langle 8, 158 \rangle, \langle 10, 320 \rangle,$
		19 9	$\langle 12, 308 \rangle, \langle 14, 160 \rangle, \langle 16, 41 \rangle]$
(1, 5, 22)	[22, 10, 4]	$2^{12} \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 4, 4 \rangle, \langle 8, 318 \rangle, \langle 12, 628 \rangle, \langle 16, 73 \rangle]$
(1, 5, 22)	[22, 10, 4]	$2^{12} \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 4, 8 \rangle, \langle 8, 306 \rangle, \langle 12, 640 \rangle, \langle 16, 69 \rangle]$
(3,4,22)	[22, 10, 4]	$2^{12} \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 4, 8 \rangle, \langle 6, 32 \rangle, \langle 8, 146 \rangle, \langle 10, 320 \rangle,$
		8	$\langle 12, 320 \rangle, \langle 14, 160 \rangle, \langle 16, 37 \rangle]$
(3,4,22)	[22, 10, 6]	$3 \cdot 5 \cdot 2^8$	$[\langle 0, 1 \rangle, \langle 6, 32 \rangle, \langle 8, 170 \rangle, \langle 10, 320 \rangle,$
			$\langle 12, 296 \rangle, \langle 14, 160 \rangle, \langle 16, 45 \rangle]$
(1, 5, 22)	$[22, 10, 8]^*$	$2^8 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$	$[\langle 0, 1 \rangle, \langle 8, 330 \rangle, \langle 12, 616 \rangle, \langle 16, 77 \rangle]$

2-(4	$\mathbf{u}_{0}, \mathbf{u}_{0}, \mathbf{u}_{1})$ de	ongno	
(d_1,d_2,d_4)	C	$ \operatorname{Aut}(C) $	Weight Distribution
(5, 17, 15)	$[15, 3, 8]^*$	$2^7 \cdot 3^5$	$[\langle 0, 1 \rangle, \langle 8, 6 \rangle, \langle 12, 1 \rangle]$
(5, 17, 15)	$[15, 4, 4]^*$	$2^9 \cdot 3$	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 8, 13 \rangle, \langle 12, 1 \rangle]$
(3, 16, 16)	$[16, 4, 8]^*$	$2^{10} \cdot 3$	$[\langle 0, 1 \rangle, \langle 8, 13 \rangle, \langle 12, 2 \rangle]$
(3, 16, 16)	[16, 5, 4]	2^9	$[\langle 0, 1 \rangle, \langle 4, 2 \rangle, \langle 8, 25 \rangle, \langle 12, 4 \rangle]$
(3, 16, 16)	[16, 5, 4]	2^{11}	$[\langle 0, 1 \rangle, \langle 4, 3 \rangle, \langle 8, 23 \rangle, \langle 12, 5 \rangle]$
(3, 16, 16)	[16, 5, 4]	$2^8 \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 8, 27 \rangle, \langle 12, 3 \rangle]$
(5, 9, 19)	[19, 5, 6]	$2^4 \cdot 3$	$[\langle 0, 1 \rangle, \langle 6, 1 \rangle, \langle 8, 9 \rangle, \langle 10, 14 \rangle, \langle 12, 6 \rangle, \langle 14, 1 \rangle]$
(5, 9, 19)	$[19, 5, 8]^*$	$2^7 \cdot 3^2$	$[\langle 0, 1 \rangle, \langle 8, 9 \rangle, \langle 10, 16 \rangle, \langle 12, 6 \rangle]$
(5, 9, 19)	[19, 6, 4]	2^{6}	$[\langle 0, 1 \rangle, \langle 4, 1 \rangle, \langle 6, 2 \rangle, \langle 8, 19 \rangle, \langle 10, 28 \rangle, \langle 12, 11 \rangle, \langle 14, 2 \rangle]$
(5, 9, 19)	[19, 6, 4]	2^{10}	$[\langle 0, 1 \rangle, \langle 4, 2 \rangle, \langle 8, 18 \rangle, \langle 10, 32 \rangle, \langle 12, 10 \rangle, \langle 16, 1 \rangle]$
(5, 9, 19)	[19, 6, 4]	$2^9 \cdot 3$	$[\langle 0, 1 \rangle, \langle 4, 3 \rangle, \langle 8, 15 \rangle, \langle 10, 32 \rangle, \langle 12, 13 \rangle]$

TABLE 3. Codes from the parts corresponding to the orbits of length 4 from the orbit matrices for $Z_2 \times Z_2$ acting on 2-(45, 5, 1) designs

The next corollary is a consequence of Theorem 3.4.

Corollary 3.6. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, k, λ) design with an automorphism group G and let O be the corresponding orbit matrix such that $pw_h|w_\ell$ for $h < \ell$ ($pw_\ell|w_h$ for $h > \ell$), where $n_h \neq 0$ and $0 \leq \ell \leq d$. Let A_ℓ be the submatrix of O such that the rows of A_ℓ correspond to orbits of length w_ℓ and the columns of A_ℓ correspond to orbits of length greater than or equal to w_ℓ . If a prime p divides $r - \lambda$, then the code spanned by the rows of the submatrix A_ℓ is a self-orthogonal code of length $n - N_\ell$ over \mathbb{F}_q , where $q = p^c$.

Proof. Let $\nu_s = \nu_t = w_\ell$, where $1 + M_\ell \le s \le t \le M_{\ell+1}$ (Figure 4), and $O = (o_{ij})$.

Then

$$\sum_{j=1+N_{\ell}}^{n} o_{sj} o_{tj} = \sum_{\substack{h=\ell\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj} \right) = \sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} + \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} o_{sj} o_{tj} \right)$$

From (2.2) we get

$$\sum_{j=1+N_{\ell}}^{n} o_{sj} o_{tj} = \sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} + \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \frac{\beta_j}{\nu_s} \gamma_{tj} \frac{\beta_j}{\nu_t} \right)$$

$$= \sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} + \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} \left(\sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \frac{w_h}{w_{\ell}} \gamma_{tj} \frac{w_h}{w_{\ell}} \right).$$

0			n_0			n_1				n_{ℓ}				n_d	
		w_0		w_0	w_1		w_1		w_{ℓ}		w_ℓ		w_d		w_d
	w_0														
m_0	:							A	0						
	w_0														
	w_1														
m_1	:									A_1					
	w_1														
_ :	:							٠							
	w_{ℓ}														
m_ℓ	:											A_{ℓ}			
	w_{ℓ}														
:	:											٠			
	w_d														
m_d	:													A_d	
	w_d														

FIGURE 4. Submatrices of the orbit matrix O related to the Corollary 3.6

Since $pw_{\ell}|w_h$ for all $h \in {\ell + 1, ..., d}$ such that $n_h \neq 0$ we have

$$\sum_{j=1+N_{\ell}}^{n} o_{sj} o_{tj} = \sum_{j=1+N_{\ell}}^{N_{\ell+1}} o_{sj} o_{tj} + \sum_{\substack{h=\ell+1\\n_h \neq 0}}^{d} (pb_h)^2 \sum_{j=1+N_h}^{N_{h+1}} \gamma_{sj} \gamma_{tj},$$

where $pb_h = \frac{w_h}{w_\ell}$ when $h \in \{\ell+1,\ldots,d\}$ and $n_h \neq 0$. From Thereom 3.4 it follows that $\sum_{j=1+N_\ell}^n o_{sj} o_{tj} \equiv 0 \pmod{p}$, and the linear code spanned by the rows of the submatrix A_ℓ is a self-orthogonal code of length $n - N_{\ell}$ over \mathbb{F}_q , where $q = p^c$.

References

- 1. T. Beth, D. Jungnickel, H. Lenz, Design Theory Vol. I, Cambridge University Press, Cambridge, 1999.
- 2. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997) 235-265.
- 3. S. Braić, A. Golemac, J. Mandić, T. Vučičić, Primitive symmetric designs with prime power number of points, J. Combin. Des., 18 (2009), 6; 141–154.
- 4. C. Colbourn, A Steiner 2-design with an automorphism fixing exactly r+2 points, J. Combin. Des., 7 (1999), no. 5, 375–380.
- 5. D. Crnković, D. Dumičić Danilović, S. Rukavina, On symmetric (78, 22, 6) designs and related self- orthogonal codes, Util. Math., 109 (2018); 227–253.

- 6. D. Crnković, D. Dumičić Danilović, S. Rukavina, M. Šimac, On some new Steiner 2-designs S(2,5,45), Util. Math., 111 (2019), 281–308.
- 7. D. Crnković, R. Egan, A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., **341** (2018), 5; 1199–1209.
- 8. D. Crnković, B. G. Rodrigues, S. Rukavina, L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161–174.
- 9. D. Crnković, S. Rukavina, Self-dual codes from extended orbit matrices of symmetric designs, Des. Codes Cryptogr., **79** (2016), 113–120.
- 10. D. Crnković, T. Zrinski, Constructing block designs with a prescribed automorphism group using genetic algorithm, J. Combin. Des., 30 (2022), 515–526.
- 11. The GAP Group, GAP Groups, Algorithms, and Programming, version 4.8.10; 2018. (https://www.gap-system.org)
- M. Harada, V. D. Tonchev, Self-orthogonal codes from symmetric designs with fixedpoint-free automorphisms, Discrete Math. 264 (2003), 81–90.
- 13. V. Krčadinac, Construction and classification of finite structures by computer, PhD thesis (in Croatian), University of Zagreb, 2004.
- 14. V. Krčadinac, Steiner 2-designs. Available at https://web.math.pmf.unizg.hr/~krcko/results/steiner.html, Accessed on 1/9/2022.
- 15. R. Mathon, A. Rosa, Some results on the existence and enumeration of BIBDs, Tech. Report Math. 125-Dec-1985, McMaster University, Hamilton ON, 1985.
- V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics 40, Wiley, New York, 1988.
- 17. T. Vučičić, *PrimitiveSD_prime_power*. Available at https://mapmf.pmfst.unist.hr/~vucicic/PrimitiveSD_prime_power/, Accessed on 1/9/2022.

FACULTY OF MATHEMATICS, UNIVERSITY OF RIJEKA, RADMILE MATEJČÍĆ 2, 51000 RIJEKA, CROATIA

E-mail address: mmaksimovic@math.uniri.hr

FACULTY OF MATHEMATICS, UNIVERSITY OF RIJEKA, RADMILE MATEJČÍĆ 2, 51000 RIJEKA, CROATIA

E-mail address: sanjar@math.uniri.hr