Chromatic polynomials of some sunflower mixed hypergraphs

Authors

  • Julian D Allagan

DOI:

https://doi.org/10.11575/cdm.v9i2.62169

Keywords:

Mathematics, Math, Discrete

Abstract

The theory of mixed hypergraphs coloring has been first introduced by Voloshin in 1993 and it has been growing ever since. The proper coloring of a mixed hypergraph H = (X; C;D) is the coloring of the vertex set X so that no D-hyperedge is monochromatic and no C-hyperedge is polychromatic. A mixed hypergraph with hyperedges of type D, C or B is commonly known as a D-, C-, or B-hypergraph respectively, where B = C = D. D-hypergraph colorings are the classic hypergraph colorings which have been widely studied. The chromatic polynomial P(H;λ) of a mixed hypergraph H is the function that counts the number of proper λ-colorings, which are mappings. Recently, Walter published [15] some results concerning the chromatic polynomial of some non-uniform D-sunflower. In this paper, we present an alternative proof of his result and extend his formula to those of non-uniform C-sunflowers and B-sunflowers. Some results of a new but related member of sunflowers are also presented.

Downloads

Published

2014-12-30

Issue

Section

Articles