The Erdős-Ko-Rado basis for a Leonard system

Authors

  • Hajime Tanaka Division of Mathematics, Graduate School of Information Sciences, Tohoku University

DOI:

https://doi.org/10.11575/cdm.v8i2.62172

Keywords:

Leonard system, Erd\H{o}s-Ko-Rado theorem, Distance-regular graph

Abstract

We introduce and discuss an Erd\H{o}s-Ko-Rado basis for the underlying vector space of a Leonard system $\Phi = (A; A^*; \{E_i\}_{i=0}^d ; \{E_i^* \}_{i=0}^d)$ that satisfies a mild condition on the eigenvalues of $A$ and $A^*$. We describe the transition matrices to/from other known bases, as well as the matrices representing $A$ and $A^*$ with respect to the new basis. We also discuss how these results can be viewed as a generalization of the linear programming method used previously in the proofs of the "Erd\H{o}s-Ko-Rado theorems" for several classical families of $Q$-polynomial distance-regular graphs, including the original 1961 theorem of Erd\H{o}s, Ko, and Rado.

References

R. Askey and J. Wilson,

A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols,

SIAM J. Math. Anal. 10 (1979) 1008-1016.

E. Bannai and T. Ito,

Algebraic Combinatorics I: Association Schemes,

Benjamin/Cummings, London, 1984.

A. E. Brouwer, A. M. Cohen and A. Neumaier,

Distance-regular graphs,

Springer-Verlag, Berlin, 1989.

P. Delsarte,

An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973).

P. Delsarte and V. I. Levenshtein,

Association schemes and coding theory,

IEEE Trans. Inform. Theory 44 (1998) 2477-2504.

P. Erd\H{o}s, C. Ko and R. Rado,

Intersection theorems for systems of finite sets,

Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.

P. Frankl and R. M. Wilson,

The Erd\H{o}s-Ko-Rado theorem for vector spaces,

J. Combin. Theory Ser. A 43 (1986) 228-236.

T. Ito, K. Tanabe and P. Terwilliger,

Some algebra related to $P$- and $Q$-polynomial association schemes,

in: A. Barg and S. Litsyn (Eds.), Codes and association schemes,

American Mathematical Society, Providence, RI, 2001, pp. 167-192;

arXiv:math/0406556.

T. Ito and P. Terwilliger,

The augmented tridiagonal algebra,

Kyushu J. Math. 64 (2010) 81-144;

arXiv:0904.2889.

R. Koekoek and R. F. Swarttouw,

The Askey scheme of hypergeometric orthogonal polynomials and its $q$-analog,

report 98-17, Delft University of Technology, The Netherlands, 1998.

J. H. Koolen, W. S. Lee and W. J. Martin,

Characterizing completely regular codes from an algebraic viewpoint,

in: R. Brualdi et al. (Eds.),

Combinatorics and Graphs,

Contemporary Mathematics, vol. 531,

American Mathematical Society, Providence, RI, 2010, pp. 223-242;

arXiv:0911.1828.

D. A. Leonard,

Orthogonal polynomials, duality and association schemes,

SIAM J. Math. Anal. 13 (1982) 656-663.

L. Lov\'{a}sz,

On the Shannon capacity of a graph,

IEEE Trans. Inform. Theory 25 (1979) 1-7.

F. J. MacWilliams and N. J. A. Sloane,

The theory of error-correcting codes,

North-Holland, Amsterdam, 1977.

W. J. Martin and H. Tanaka,

Commutative association schemes,

European J. Combin. 30 (2009) 1497-1525;

arXiv:0811.2475.

A. Schrijver,

A comparison of the Delsarte and Lov\'{a}sz bounds,

IEEE Trans. Inform. Theory 25 (1979) 425-429.

H. Tanaka,

Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs,

J. Combin. Theory Ser. A 113 (2006) 903-910.

H. Tanaka,

A bilinear form relating two Leonard systems,

Linear Algebra Appl. 431 (2009) 1726-1739;

arXiv:0807.0385.

H. Tanaka,

Vertex subsets with minimal width and dual width in $Q$-polynomial distance-regular graphs,

Electron. J. Combin. 18 (2011) P167;

arXiv:1011.2000.

H. Tanaka,

The Erd\H{o}s-Ko-Rado theorem for twisted Grassmann graphs,

Combinatorica, to appear;

arXiv:1012.5692.

P. Terwilliger,

The subconstituent algebra of an association scheme I,

J. Algebraic Combin. 1 (1992) 363-388.

P. Terwilliger,

The subconstituent algebra of an association scheme III,

J. Algebraic Combin. 2 (1993) 177-210.

P. Terwilliger,

Two linear transformations each tridiagonal with respect to an eigenbasis of the other,

Linear Algebra Appl. 330 (2001) 149-203;

arXiv:math/0406555.

P. Terwilliger,

Leonard pairs from $24$ points of view,

Rocky Mountain J. Math. 32 (2002) 827-888;

arXiv:math/0406577.

P. Terwilliger,

Introduction to Leonard pairs,

J. Comput. Appl. Math. 153 (2003) 463-475.

P. Terwilliger,

Leonard pairs and the $q$-Racah polynomials,

Linear Algebra Appl. 387 (2004) 235-276;

arXiv:math/0306301.

P. Terwilliger,

Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array,

Des. Codes Cryptogr. 34 (2005) 307-332;

arXiv:math/0306291.

P. Terwilliger,

An algebraic approach to the Askey scheme of orthogonal polynomials,

in: F. Marcell\'{a}n and W. Van Assche (Eds.),

Orthogonal polynomials and special functions, Computation and applications,

Lecture Notes in Mathematics, vol. 1883,

Springer-Verlag, Berlin, 2006, pp. 255-330;

arXiv:math/0408390.

R. M. Wilson,

The exact bound in the Erd\H{o}s-Ko-Rado theorem,

Combinatorica 4 (1984) 247-257.

Downloads

Published

2013-12-29

Issue

Section

Articles