A curious polynomial interpolation of Carlitz-Riordan's q-ballot numbers

Authors

  • Frédéric Chapoton CNRS et University Lyon 1
  • Jiang Zeng Université Claude Bernard Lyon 1

DOI:

https://doi.org/10.11575/cdm.v10i1.62222

Keywords:

$q$-Catalan numbers, lattice paths, $q$-ballot numbers

Abstract

We study a polynomial sequence $C_n(x|q)$ defined as a solution of a $q$-difference equation. This sequence, evaluated at $q$-integers, interpolates Carlitz--Riordan's $q$-ballot numbers. In the basis given by some kind of $q$-binomial coefficients, the coefficients are again some $q$-ballot numbers. We obtain another curious recurrence relation for these polynomials in a combinatorial way.

Author Biographies

Frédéric Chapoton, CNRS et University Lyon 1

Institut Camille Jordan

Université Claude Bernard Lyon 1

Bâtiment Braconnier

21 Avenue Claude Bernard

F-69622 VILLEURBANNE Cedex

Jiang Zeng, Université Claude Bernard Lyon 1

Institut Camille Jordan

Université Claude Bernard Lyon 1

Bâtiment Braconnier

21 Avenue Claude Bernard

F-69622 VILLEURBANNE Cedex

Downloads

Published

2015-07-31

Issue

Section

Articles