On Chromatic Number of General Kneser Graphs

Authors

  • Sharareh Alipour Sharif University of Technology
  • Amir Jafari Sharif University of Technology

DOI:

https://doi.org/10.11575/cdm.v12i2.62380

Keywords:

Graph theory, Kneser Graph, Chromatic number

Abstract

For integers $0 < i < k < n$, the general Kneser graph $K(n; k; i)$, is a graph
whose vertices are subsets of size $k$ of the set ${1, 2, ..., n:}$ and two vertices $F$ and $F'$ are connected if and only if their intersection has less than i elements. In this paper we study the chromatic number of this graph. Some new bounds
and properties for this chromatic number is derived.

References

M. Aigner and G.M. Ziegler, Proofs from THE BOOK, 3 ed., Springer, 2004.

I. Barany, A short proof of Kneser's conjecture, J. Comb. Theory, Ser. A 25 (1978), no. 3, 325-326.

F.R.K. Chung and L. Lu, An upper bound for the Turan number t3(n; 4), J. Comb. Theory, Ser. A 87 (1999), no. 2, 381-389.

P. Frankl, On the chromatic number of the general Kneser-graph, J. Graph Theory 9 (1985), no. 2, 217-220.

J.E. Greene, A new short proof of Kneser's conjecture, Amer. Math. Monthly 109 (2002), no. 10, 918-920.

M. Kneser, Aufgabe360, Jahresber. Dtsch. Math.-Ver. 58 (1955), no. 1, 27-27.

A.V. Kostochka, A class of constructions for Turan's (3, 4) problem, Combinatorica 2 (1982), no. 2, 187-192.

L. Lovasz, Kneser's conjecture, chromatic number, and homotopy, J. Comb. Theory, Ser. A 25 (1978), no. 3, 319-324.

J. Matousek, Using the Borsuk-Ulam theorem, Springer-Verlag, 2003.

J. R. Tort, Un probleme de partition de l'ensemble des parties a trois elements d'un ensemble ni, Discrete Math. 44 (1983), no. 2, 181-185.

P. Turan, On an extremal problem in graph theory, Colloquium Mathematicae 13 (1964), no. 2, 251-254.

Downloads

Published

2017-11-27

Issue

Section

Articles