Bounds for the boxicity of Mycielski graphs
DOI:
https://doi.org/10.11575/cdm.v13i1.62452Keywords:
boxicity, chromatic number, cointerval graph, edge clique cover number, Mycielski graphAbstract
A box in Euclidean k-space is the Cartesian product of k closed intervals on the real line. The boxicity of a graph G, denoted by box(G), is the minimum nonnegative integer k such that G can be isomorphic to the intersection graph of a family of boxes in Euclidean k-space.
Mycielski introduced an interesting graph operation that extends a graph G to a new graph M(G), called the Mycielski graph of G. In this paper we observe the behavior of boxicity of Mycielski graphs. We see that box(M(G)) is at least box(G) for a graph G, and hence we are interested in whether the boxicity of Mycielski graph of G is more than that of G or not. Here we give bounds for the boxicity of Mycielski graphs in terms of the number of universal vertices of G and the edge clique cover number of the complement of G. Further observations determine the boxicity of the Mycielski graph M(G) if G has no universal vertices or odd universal vertices and box(G) is equal to the edge clique cover number of the complement of G.
We also present relations between the Mycielski graph M(G) and its generalizations M3(G) and Mr(G) in the context of boxicity, which will encourage us to calculate the boxicity of M(G) and M3(G).
References
2. L. S. Chandran, M. C. Francis, and R. Mathew, Chordal bipartite graphs with high boxicity, Graphs Combin. 27 (2011), 353-362.
3. L. S. Chandran, W. Imrich, R. Mathew, and D. Rajendraprasad, Boxicity and cubicity of product graphs, European J. Combin. 48 (2015), 100-109.
4. L. S. Chandran, R. Mathew, and N. Sivadasan, Boxicity of line graphs, Discrete Math. 311 (2011), 2359-2367.
5. L. S. Chandran and N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B 97 (2007), 733-744.
6. M. B. Cozzens, Higher and multidimensional analogues of interval graphs, Ph.D. thesis, Rutgers University, New Brunswick, NJ, 1981.
7. M. B. Cozzens and F. S. Roberts, Computing the boxicity of a graph by covering its complement by cointerval graphs, Discrete Appl. Math. 6 (1983), 217-228.
8. M. Larsen, J. Propp, and D. Ullman, The fractional chromatic number of Mycielski's graphs, J. Graph Theory 19 (1995), 411-416.
9. C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962), 45-64.
10. W. Lin, J. Wu, P. C. B. Lam, and G. Gu, Several parameters of generalized Mycielskians, Discrete Appl. Math. 154 (2006), 1173-1182.
11. J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955), 161-162.
12. R. J. Opsut and F. S. Roberts, The Theory and Applications of Graphs, ch. On the feet maintenance, mobile radio frequency, task assignment, and traffic phasing problems, pp. 479-492, Wiley, New York, 1981.
13. F. S. Roberts, Recent progress in combinatorics, ch. On the boxicity and cubicity of a graph, pp. 301-310, Academic Press, New York, 1969.
14. F. S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, New Jersey, 1976.
15. F. S. Roberts, Theory and Applications of Graphs, Lecture Notes in Mathematics, vol. 642, ch. Food webs, competition graphs, and the boxicity of ecological phase space, pp. 447-490, Springer-Verlag, 1978.
16. E. R. Scheinerman, Intersection classes and multiple intersection parameters, Ph.D. thesis, Princeton University, 1984.
17. C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986), 9-20.
18. W. T. Trotter Jr., A characterization of Roberts' inequality for boxicity, Discrete Math. 28 (1979), 303-313.
Downloads
Published
Issue
Section
License
This copyright statement was adapted from the statement for the University of Calgary Repository and from the statement for the Electronic Journal of Combinatorics (with permission).
The copyright policy for Contributions to Discrete Mathematics (CDM) is changed for all articles appearing in issues of the journal starting from Volume 15 Number 3.
Author(s) retain copyright over submissions published starting from Volume 15 number 3. When the author(s) indicate approval of the finalized version of the article provided by the technical editors of the journal and indicate approval, they grant to Contributions to Discrete Mathematics (CDM) a world-wide, irrevocable, royalty free, non-exclusive license as described below:
The author(s) grant to CDM the right to reproduce, translate (as defined below), and/or distribute the material, including the abstract, in print and electronic format, including but not limited to audio or video.
The author(s) agree that the journal may translate, without changing the content the material, to any medium or format for the purposes of preservation.
The author(s) also agree that the journal may keep more than one copy of the article for the purposes of security, back-up, and preservation.
In granting the journal this license the author(s) warrant that the work is their original work and that they have the right to grant the rights contained in this license.
The authors represent that the work does not, to the best of their knowledge, infringe upon anyone’s copyright.
If the work contains material for which the author(s) do not hold copyright, the author(s) represent that the unrestricted permission of the copyright holder(s) to grant CDM the rights required by this license has been obtained, and that such third-party owned material is clearly identified and acknowledged within the text or content of the work.
The author(s) agree to ensure, to the extent reasonably possible, that further publication of the Work, with the same or substantially the same content, will acknowledge prior publication in CDM.
The journal highly recommends that the work be published with a Creative Commons license. Unless otherwise arranged at the time the finalized version is approved and the licence granted with CDM, the work will appear with the CC-BY-ND logo. Here is the site to get more detail, and an excerpt from the site about the CC-BY-ND. https://creativecommons.org/licenses/
Attribution-NoDerivs
CC BY-ND
This license lets others reuse the work for any purpose, including commercially; however, it cannot be shared with others in adapted form, and credit must be provided to you.