String C-groups of order 1024

Authors

  • Yasushi Gomi Sophia University
  • Mark Loyola Ateneo de Manila University
  • Ma. Louise Antonette De Las Penas Ateneo de Manila University

DOI:

https://doi.org/10.11575/cdm.v13i1.62475

Keywords:

string C-groups, abstract regular polytopes, order 1024, 2-groups

Abstract

This paper determines the non-degenerate string C-groups of order
1024. For groups of rank 3, we use the technique of central extension of
string C-groups of order 512. For groups of rank at least 4, we compute for
quotients of universal string C-groups.

Author Biographies

Yasushi Gomi, Sophia University

Associate Professor, Department of Information and Communication Sciences

Mark Loyola, Ateneo de Manila University

Assistant Professor, Department of Mathematics

Ma. Louise Antonette De Las Penas, Ateneo de Manila University

Professor, Department of Mathematics

References

[1] M. Conder, Regular polytopes with up to 2000 flags, https://www.math.auckland.ac.nz/ conder/ (2012)

[2] M. Conder, D. Oliveros, The intersection condition for regular polytopes, J. Combin. Theory Ser. A, 120, 1291-1304 (2013)

[3] T. Connor, D. Leemans, C-groups of Suzuki type, J. Algebr. Comb., 42, 849-860 (2015)

[4] M.E. Fernandes, D. Leemans, Polytopes of high rank for the symmetric groups, Adv. Math., 228, 3207-3222 (2011)

[5] M.E. Fernandes, D. Leemans, M. Mixer, Polytopes of high rank for the alternating groups, J. Combin. Theory Ser. A , 119, 42-56 (2012)

[6] The GAP Group, GAP { Groups, Algorithms, and Programming, Version 4.7.8, http://www.gap-system.org (2015)

[7] M.I. Hartley, An atlas of small regular abstract polytopes, Period. Math. Hungar., 53(12), 149-156 (2006)

[8] M.I. Hartley, A. Hulpke, Polytopes derived from sporadic simple groups, Contributions to discrete mathematics, 5(2), 106-118 (2010)

[9] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990)

[10] D. Leemans, Almost simple groups of Suzuki type acting on polytopes, Proc. Amer. Math. Soc., 134(12), 3649-3651 (2006)

[11] Computational Algebra Group (University of Sydney), The Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/ (2016)

[12] P. McMullen, E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge (2002)

[13] P. McMullen, E. Schulte, Regular polytopes from twisted Coxeter groups and unitary reflexion groups, Adv. Math., 82, 35-87 (1990)

[14] E. Schulte, A.I. Weiss, Problems on polytopes, their groups, and realizations, Period. Math. Hungar., 53(1-2), 231-255 (2006)

Downloads

Published

2018-01-29

Issue

Section

Articles