ON THE SPECTRUM OF OCTAGON QUADRANGLE SYSTEMS OF ANY INDEX

Authors

  • Paola Bonacini University of Catania
  • Lucia Marino University of Catania

DOI:

https://doi.org/10.11575/cdm.v12i1.62559

Keywords:

Octagon quadrangle system, designs, decomposition.

Abstract

An \emph{octagon quadrangle} is the graph consisting of a length $8$ cycle $(x_{1},x_{2},\dots,x_{8})$ and two chords, $\{x_{1},x_{4}\}$ and $\{x_{5},x_{8}\}$. An \emph{octagon quadrangle system} of order $v$ and index $\lambda$ is a pair $(X,\mathcal B)$, where $X$ is a finite set of $v$ vertices and $\mathcal B$ is a collection of octagon quadrangles (called blocks) which partition the edge set of $\lambda K_{v}$, with $X$ as vertex set. In this paper we determine completely the spectrum of octagon quadrangle systems for any index $\lambda$, with the only possible exception of $v=20$ for $\lambda=1$.

References

E. Billington, S. Kucukcifci, C.C. Lindner, E.S. Yazici, \emph{Embedding 4-cycle systems into octagon triple systems}, Utilitas Mathematica {\bf{79}} (2009), 99-106.

L. Berardi, M. Gionfriddo, R. Rota, \emph{Perfect octagon quadrangle systems}, Discrete Math. {\bf{310}} (2010), 1979--1985.

L. Berardi, M. Gionfriddo, R. Rota, \emph{Perfect octagon quadrangle systems with upper $C_{4}$-systems}, J. Statist. Plann. Inference {\bf{141} }(2011), no. 7, 2249--2255.

L. Berardi, M. Gionfriddo, R. Rota, \emph{Balanced and Strongly Balanced Pk-designs}, Discrete Mathematics {\bf{312} }(2012), 633-636.

L. Berardi, M. Gionfriddo, R. Rota, \emph{Perfect octagon quadrangle systems - II}, Discrete Math. {\bf{312}} (2012), 614--620.

P. Bonacini, M. Gionfriddo, L. Marino, \emph{Balanced House-systems and Nestings}, Ars Combinatoria (2015), to appear.

P. Bonacini, M. Gionfriddo, L. Marino, \emph{Nestings of House-designs}, (2015) preprint.

L. Gionfriddo, M. Gionfriddo, \emph{Perfect Dodecagon Quadrangle Systems}, Discrete Mathematics 310 (2010), 3067-3071.

M. Gionfriddo, S. Kucukcifci, L. Milazzo, \emph{Balanced and Strongly balanced 4-kite designs}, Utilitas Mathematica 91 (2013), 121-129.

M. Gionfriddo, L. Milazzo, R.Rota, \emph{Multinestings in Octagon Quadrangle Systems}, Ars Combinatoria 113A (2014), 193-199.

M. Gionfriddo, L. Milazzo, V. Voloshin, \emph{Hypergraphs and Designs}, Mathematics Research Developments, Nova Science Publishers Inc., New York, 2015.

M.Gionfriddo, S.Milici, \emph{Octagon kite systems}, Electronic Notes in Discrete Mathematics 40 (2013), 129-134.

S. Kucukcifci, C.C. Lindner, \emph{Perfect hexagon triple systems}, Discrete Mathematics 279 (2004), 325-335.

C.C. Lindner, C. Rodger, \emph{Design Theory}, Discrete Mathematics and its Applications, CRC Press, Boca Raton-New York, 1997.

C.C. Lindner, A. Rosa, \emph{Perfect dexagon triple systems}, Discrete Mathematics, 308 (2008), 214-219.

Downloads

Published

2017-09-27

Issue

Section

Articles