Latin Squares and their Bruhat Order

Authors

  • Rosário Fernandes Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
  • Henrique F. da Cruz Universidade da beira Interior https://orcid.org/0000-0003-2941-3194
  • Domingos Salomão Universidade Mandume ya Ndemufayo, Escola Superior Pedagógica do Namibe.

DOI:

https://doi.org/10.11575/cdm.v15i1.62708

Abstract

In this paper we investigate the Bruhat order on the class of Latin squares. We study its cover relation and minimal elements. We prove that the class of Latin squares of order $n$, with $n\not\in\{1,2,4\}$, has at least two minimal elements, and we present a process to construct some minimal Latin squares for this relation.

References

R.A. Brualdi, Matrices of zeros and ones with fixed row and column-sum vectors, Linear Algebra Appl., 33: 159-231 (1980).

R.A. Brualdi and S.-G. Hwang, A Bruhat order for the class of
$(0,1)$-matrices with row sum vector $R$ and column sum vector $S$, Electronic Journal of Linear Algebra, 12 (2004) 6-16.

R.A. Brualdi, Combinatorial Matrix Classes, Encyclopedia
of Mathematics and its Applications, vol. 108, Cambridge University Press, Cambridge (2006).

R.A. Brualdi and L. Deaett, More on the Bruhat order for
$(0,1)$-matrices, Linear algebra and its Applications, 421 (2007) 219-232.


R.A. Brualdi and E. Fritscher, Bruhat order of tournaments, Linear Algebra and its Applications, 458 (2014) 261-279.

R.A. Brualdi and G. Dahl, Doubly stochastic matrices and the Bruhat order, Czechoslovak Mathematical Journal, 66 (141) (2016) 681-700.

R. A. Brualdi and M. W.Schroeder, Alternating sign matrices and their Bruhat order, Discrete Mathematics, 340, Issue 8 (2017) 1996-2019.

R. A. Brualdi, R. Fernandes and S. Furtado, On the Bruhat order of labeled graphs, accepted in Discrete Applied Mathematics.


H.F. Cruz, R. Fernandes and S. Furtado, Minimal matrices
in the Bruhat order for symmetric $(0,1)$-matrices,t Linear Algebra and its Applications, 530 (2017) 160-184.

Gale, D., A theorem on flows in networks. Pacific J. Math.,7: (1957) 1073-1082.



Ryser, H. J. Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9. (1957), 371-377.

Downloads

Published

2020-05-11

Issue

Section

Articles