The Spectrum of Balanced P^(3)(1, 5)-Designs

Authors

  • Paola Bonacini Università di Catania, Italy
  • Maria Di Giovanni
  • Mario Gionfriddo
  • Lucia Marino Università di Catania
  • Antoinette Tripodi

DOI:

https://doi.org/10.11575/cdm.v12i1.62743

Keywords:

Designs-Hypergraphs-VertexBalance

Abstract

Given a 3-uniform hypergraph H(3), an H(3)-decomposition of the complete hypergraph K(3)_v is a collection of hypergraphs, all isomorphic to H(3), whose edge sets partition the edge set of K(3)_v. An H(3)-decomposition of K(3)_v is also called an H(3)-design and the hypergraphs of the partition are said to be the blocks. An H(3)-design is said to be balanced if the number of blocks containing any given vertex of K(3)_v is a constant. In this paper, we determine completely, without exceptions, the spectrum of balanced P(3)(1 5)-designs.

References

A. Amato, M. Gionfriddo, and L. Milazzo, 2-regular equicolourings for P4-designs, Discrete Math. 312 (2012), 2252-2261.

L. Berardi, M. Gionfriddo, and R. Rota, Perfect octagon quadrangle systems, Discrete Math. 310 (2010), 1979-1985.

L. Berardi, M. Gionfriddo, and R. Rota, Perfect octagon quadrangle systems with an upper C4-system, Journal of Statistical Planning and Inference 141 (2011), 2249{2255.

L. Berardi, M. Gionfriddo, and R. Rota, Balanced and strongly balanced Pk-designs, Discrete Math. 312 (2012), 633-636.

L. Berardi, M. Gionfriddo, and R. Rota, Perfect octagon quadrangle systems - II, Discrete Math. 312 (2012), 614-620.

J.C. Bermond, A. Germa, and D. Sotteau, Hypergraphs-designs, Ars Combin. 3 (1977), 47-66.

P. Bonacini, On a 3-uniform path-hypergraph on 5 vertices, Appl. Math. Sci. 10 (2016), 1489-1500.

P. Bonacini, M. Gionfriddo, and L. Marino, Balanced house-systems and nestings, Ars Combin. 121 (2015), 429-436.

P. Bonacini, M. Gionfriddo, and L. Marino, Construction of non-cyclic balanced P(3)(1; 5)-designs, App. Math. Sci. 9 (2015), 6273-6282.

M. Di Giovanni and M. Gionfriddo, On the spectrum of hyperpath P(h)(h [SPECIAL CHARACTER] 1; h + 1)- designs, to appear.

M. Di Giovanni and M. Gionfriddo, Uniform hyperpath P(4)-designs, Appl. Math. Sci. 10 (2016), 3039-3056.

M. Gionfriddo, About balanced G-designs, Appl. Math. Sci. 7 (2013), 6787-6791.

M. Gionfriddo, Construction of cyclic H(3)-designs, Appl. Math. Sci. 9 (2015), 3485-3503.

M. Gionfriddo, S. Kucukcifci, and L. Milazzo, Balanced and strongly balanced 4-kite designs, Util. Math. 91 (2013), 121-129.

M. Gionfriddo, L. Milazzo, and R. Rota, Strongly balanced 4-kite designs nested into OQ-systems, Applied Mathematics 4 (2013), 703-706.

M. Gionfriddo, L. Milazzo, and V. Voloshin, Hypergraphs and Designs, Nova Science Publishers Inc., New York, 2015.

M. Gionfriddo and S. Milici, Strongly balanced four bowtie systems, Appl. Math. Sciences 8 (2014), 6133{6140.

M. Gionfriddo and S. Milici, Balanced P(3)(2; 4)-designs, Util. Math. 99 (2016), 81-88.

M. Gionfriddo and G. Quattrocchi, Embedding balanced P3-designs into balanced P4-designs, Discrete Math. 308 (2008), 155-160.

C.C. Lindner, Graph decompositions and quasigroups identities, Le Matematiche XLV (1990), 83-118.

C. Rodger, Graph decompositions, Le Matematiche XLV (1990), 119-139.

Downloads

Published

2017-09-27

Issue

Section

Articles