Partitioning the $5\times 5$ array into restrictions of circles

Authors

  • Robert Dawson Saint Mary's University

DOI:

https://doi.org/10.11575/cdm.v15i1.62808

Abstract

We show that there is a unique way to partition a $5\times 5$ array of lattice points into restrictions of five circles. This result is extended to the $6\times 5$ array, and used to show the optimality of a six-circle solution for the $6\times 6$ array.

References

D. M. Burton, Elementary Number Theory, 1976, Allyn and Bacon

S. Chow, Solution to Problem CC266, Crux Mathematicorum {\bf 44(3)} (2018), 137

R. Honsberger, Problem CC266, Crux Mathematicorum {\bf 43(4)}(2017), 124--125

E. Landau, {\"U}ber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, {\em Arch. Math. Phys.} {\bf 13} (1908), 305--312.

J. G. MacLauchlin, comment, Crux Mathematicorum {\bf 44(3)} (2018), 137

Downloads

Published

2020-05-11

Issue

Section

Articles