Some combinatorial properties of hexagonal lattices

Authors

  • Lili Mu Liaoning Normal University

DOI:

https://doi.org/10.11575/cdm.v15i1.68264

Abstract

In this paper, we consider the combinatorial properties of the hexagonal lattice. Let $e(n)$ be the number of $n$-element order ideals in a hexagonal lattice. We give the enumeration of $e(n)$ by showing a bijection between the order ideals and Schröder paths. Further, we get formulae for the flag $f$- and $h$-vectors of the hexagonal lattice.

References

B. Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009) 3936--3953.

K. Nyman and E. Swartz, Inequalities for the h-Vectors and Flag h-Vectors of Geometric Lattices,

Discrete Comput. Geom. (2004) 533--548.

J. Propp, Some variants of ferrers diagrams, J. Combin. Theory Ser. A 52 (1989) 98--128.

J. Schweig, Convex-Ear Decompositions and the Flag h-Vector, Electron. J. Combin. 18 (2010) p4.

R. Stanley, Ordered structures and partitions, Memoirs Amer. Math. Soc., no. 119 (1972).

R. Stanley, Supersolvable lattices, Alg. Univ. 2 (1972) 197--217.

R. Stanley, Binomial posets, M"obius inversion, and permutation enumeration, J. Combinatorial

Theory Ser. A 20 (1976) 336--356.

R. Sthanley, Enumerative Combinatorics, vol.1, second ed. Cambridge University Press, Cambridge (2012).

Downloads

Published

2020-05-11

Issue

Section

Articles