Confining the robber on cographs
Abstract
In a game of Cops and Robbers on graphs, usually the cops' objective is to capture the robber---a situation which the robber wants to avoid invariably. In this paper, we begin with introducing the notions of trapping and confining the robber and discussing their relations with capturing the robber. Our goal is to study the confinement of the robber on graphs that are free of a fixed path as an induced subgraph. We present some necessary conditions for graphs $G$ not containing the path on $k$ vertices (referred to as $P_k$-free graphs) for some $k\ge 4$, so that $k-3$ cops do not have a strategy to capture or confine the robber on $G$ (Propositions 2.1, 2.3). We then show that for planar cographs and planar $P_5$-free graphs the confining cop number is at most one and two, respectively (Corollary 2.4). We also show that the number of vertices of a connected cograph on which one cop does not have a strategy to confine the robber has a tight lower bound of eight. Moreover, we explore the effects of twin operations---which are well known to provide a characterization of cographs---on the number of cops required to capture or confine the robber on cographs. Finally, we pose two conjectures on confining the robber on $P_5$-free graphs and the smallest planar graph of confining cop number of three.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Masood Masjoody
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
This copyright statement was adapted from the statement for the University of Calgary Repository and from the statement for the Electronic Journal of Combinatorics (with permission).
The copyright policy for Contributions to Discrete Mathematics (CDM) is changed for all articles appearing in issues of the journal starting from Volume 15 Number 3.
Author(s) retain copyright over submissions published starting from Volume 15 number 3. When the author(s) indicate approval of the finalized version of the article provided by the technical editors of the journal and indicate approval, they grant to Contributions to Discrete Mathematics (CDM) a world-wide, irrevocable, royalty free, non-exclusive license as described below:
The author(s) grant to CDM the right to reproduce, translate (as defined below), and/or distribute the material, including the abstract, in print and electronic format, including but not limited to audio or video.
The author(s) agree that the journal may translate, without changing the content the material, to any medium or format for the purposes of preservation.
The author(s) also agree that the journal may keep more than one copy of the article for the purposes of security, back-up, and preservation.
In granting the journal this license the author(s) warrant that the work is their original work and that they have the right to grant the rights contained in this license.
The authors represent that the work does not, to the best of their knowledge, infringe upon anyone’s copyright.
If the work contains material for which the author(s) do not hold copyright, the author(s) represent that the unrestricted permission of the copyright holder(s) to grant CDM the rights required by this license has been obtained, and that such third-party owned material is clearly identified and acknowledged within the text or content of the work.
The author(s) agree to ensure, to the extent reasonably possible, that further publication of the Work, with the same or substantially the same content, will acknowledge prior publication in CDM.
The journal highly recommends that the work be published with a Creative Commons license. Unless otherwise arranged at the time the finalized version is approved and the licence granted with CDM, the work will appear with the CC-BY-ND logo. Here is the site to get more detail, and an excerpt from the site about the CC-BY-ND. https://creativecommons.org/licenses/
Attribution-NoDerivs
CC BY-ND
This license lets others reuse the work for any purpose, including commercially; however, it cannot be shared with others in adapted form, and credit must be provided to you.